搜索

x
中国物理学会期刊

稀土金属的弹性性质及其压力依赖性研究

CSTR: 32037.14.aps.74.20250574

Elastic properties and their pressure dependence of rare earth metals

CSTR: 32037.14.aps.74.20250574
PDF
HTML
导出引用
  • 稀土金属在工程技术领域具有重要应用, 同时因其与f电子相关的独特行为受到凝聚态物理的广泛关注. 本文结合第一性原理计算与数据汇编, 对稀土金属的弹性性质随原子序数变化开展分析, 并以Ce和Yb为例, 对高压0—15 GPa范围内的弹性演化进行研究讨论, 对比了不同f电子处理方法的模拟表现. 结果表明, 稀土金属随原子序数变化存在明显的延展性差异, 在压力作用下的相变处弹性性质会发生显著改变. 特别是, 在Ce的fcc同构相变和Yb的fcc-bcc相变中出现脆、延性转变. 这些与随原子序数或压力条件改变发生的成键特性变化密切相关. 此外, 研究发现, 将f电子作为芯层电子处理的模拟方法能够较好地描述稀土金属在常压下的弹性性质, 但在描述高压下的结构相变及弹性性质演化趋势时, 将f电子作为价电子并考虑电子关联效应修正的处理方法则更为有效. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00150中访问获取.

     

    Rare earth metals are of significant importance in engineering and technological applications, and their unique f-electron-related behaviors have attracted widespread interest in condensed matter physics. In this work, we investigate the elastic properties of rare earth metals ranging from Ce to Yb by combining first-principles calculations with systematic data compilation. Taking Ce and Yb as representative cases, we investigate the evolution of their elastic properties under high-pressure conditions (0–15 GPa), and we systematically compare the simulation performances of different f-electron treatment approaches. The results indicate a significant difference in ductility between light and heavy rare earth metals under ambient pressure. Under pressure, the elastic properties of Ce and Yb undergo marked changes in phase transitions. Specifically, the B/G ratio, a key indicator of ductility, decreases from about 2.0 in light lanthanides to around 1.5 in heavy lanthanides, crossing the critical threshold of 1.75. Notably, during the fcc iso-structural phase transition in Ce and the fcc-bcc phase transition in Yb, a significant brittle-ductile transition is observed. These transitions are closely related to the bonding characteristics modulated by atomic number or pressure condition. For instance, as the atomic number increases, the Cauchy pressure (C12C44) decreases with the variation of s and d valence electrons, indicating an enhanced covalent bonding tendency. In addition, this study reveals that simulating f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under ambient pressure. However, when modeling high-pressure structural phase transitions and their related elastic evolution, the method of treating f-electrons as valence electrons and performing electron correlation correction shows better accuracy. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00150.

     

    目录

    /

    返回文章
    返回