搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半赫斯勒热发电器件建模与性能表征方法研究

张雨谦 纽春萍 何海龙 任鸿睿 吴翊

引用本文:
Citation:

半赫斯勒热发电器件建模与性能表征方法研究

张雨谦, 纽春萍, 何海龙, 任鸿睿, 吴翊

Study on Modeling and Performance Characterization Methods of Half-Heusler Thermoelectric Devices

ZHANG Yuqian, NIU Chunping, HE Hailong, REN hongrui, WU Yi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 由于能够实现热能和电能的直接转换,中高温区热电器件在深空探测、工业余废热回收等领域具有巨大的应用潜力。半赫斯勒合金由于优异的机械性能、热稳定性和良好的热电表现,成为中高温区热电器件制作的有潜力的候选材料。然而与半赫斯勒热电材料的研究相比,相应的器件研究还远远滞后,制约了其大规模的工业应用。本研究首先制备了高性能P型和N型半赫斯勒合金,采用自主设计的石墨模具成功钎焊组装了单对半赫斯勒热电器件。之后采用有限元分析方法对单对器件进行三维仿真建模,同时建立一维数值模型进行对比。除此之外,开发了一套自主集成的综合测试系统,系统地表征了单对器件的输出功率、转换效率等关键热电性能。两种模型仿真预测结果与实验测量数据高度一致,在工作温差达到538K时,最大输出功率和最大转换效率分别为0.28W和7.34%,能够与目前报道的器件最佳性能相媲美。本研究结果可以为半赫斯勒热电器件的实际制作、仿真建模和表征测量提供参考。
    Due to the ability to directly convert thermal energy into electrical energy, thermoelectric devices operating in the medium-to-high temperature range hold significant potential for applications such as deep space exploration and industrial waste heat recovery. Among candidate materials, half-Heusler alloys have emerged as promising options for device fabrication in this temperature range, owing to their excellent mechanical properties, thermal stability, and favorable thermoelectric performance. However, research on half-Heusler-based thermoelectric devices remains far behind that on the materials, limiting their large-scale industrial application. In this study, high-performance p-type Hf0.5Zr0.5CoSb0.8Sn0.2 and n-type Hf0.75Zr0.25NiSn0.99Sb0.01 half-Heusler alloys were firstly synthesized. Then the single-pair thermoelectric module was successfully brazing assembled by the self-designed graphite mold. After that, 3D finite element modeling and 1D numerical modeling were conducted to simulate the module behavior, both showing strong agreement with experimental measurements, thereby validating the accuracy of the simulation models. Using the established simulation models, the influence of geometric parameters on module performance was investigated. It was found that optimizing the leg height and cross-sectional area ratio is critical for achieving maximum conversion efficiency. Additionally, a self-integrated comprehensive testing system (Model: TE-X-MS) was developed to systematically characterize key thermoelectric properties, including output power and conversion efficiency. The fabricated device achieved a maximum output power of 0.28 W and a peak conversion efficiency of 7.34% under a temperature difference of 538K, which is comparable to the best-performing devices reported to date. These results provide valuable reference into the fabrication, modeling, and characterization of half-Heusler thermoelectric devices for practical applications.
  • [1]

    Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C, Wang W X 2020 Acta Phys. Sin. 69 246801 (in Chinese) [王雅宁,陈少平,樊文浩,郭敬云,吴玉程,王文先 2020 物理学报 69 246801]

    [2]

    Yang S G, Lin X, He J S, Zhai L J, Chen L, Lv M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401(in Chinese) [杨士冠,林鑫,何俊松,翟立军,程林,吕明豪,刘虹霞,张艳,孙志刚 2023 物理学报72 228401]

    [3]

    Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X 2023 Acta Phys. Sin. 72 124401(in Chinese) [谢忠祥,喻霞,贾聘真,陈学坤,邓元祥,张勇,周五星 2023 物理学报 72 124401]

    [4]

    He H L, Fang Z X, Niu C P, Wu Y, Rong M Z 2021 Energy Convers. Manag. 241 114314

    [5]

    Yu K, Wu Y, He H L, Niu C P, Rong M Z, Wu D, Liu S X, Zhang Y Q 2021 J. Alloys Compd. 885 161378

    [6]

    Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Chinese Physics B 30 128401

    [7]

    Xu Y, Xu X Y, Zhang W, OuYang T, Tang C 2019 Acta Phys. Sin. 68 247202 (in Chinese) [许易, 许小言, 张薇, 欧阳滔,唐超 2019物理学报68 247202]

    [8]

    Lu J, Cui C, Ouyang T, Li J, He C, Tang C, Zhong J 2023 Chinese Physics B 32 048401

    [9]

    Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 Chinese Physics B 29 118401

    [10]

    Ovik R, Long B D, Barma M C, Riaz M, Sabri M F M, Said S M, Saidur R 2016

    [11]

    Eddine A N, Chalet D, Faure X, Faure X, Chessé P 2018 Energy 143 682

    [12]

    Renew. Sustain. Energy Rev. 64 635

    [13]

    Haddad C, Périlhon C, Danlos A, François M X, Descombes G 2014 Energy Procedia 50 1056

    [14]

    Shen Z G, Tian L L, Liu X 2019 Energy Convers. Manag. 195 1138

    [15]

    Holgate T C, Bennett R, Hammel T, Caillat T, Keyser S, Sievers B 2015 J. Electron. Mater. 44 1814

    [16]

    Bai S Q, Liao J C, Xia X G, Chen L D 2020 J. Deep Space Explor. 7 525 (in Chinese) [柏胜强,廖锦城,夏绪贵,陈立东 2020深空探测学报 7 525]

    [17]

    Xiao Y, Zhao L D 2018 npj Quantum Mater. 3 55

    [18]

    Rogl G, Rogl P 2017 Curr. Opin. Green Sustain. Chem. 4 50

    [19]

    Huang L H, Zhang Q Y, Yuan B, Xiang L, Yan X, Ren Z F 2016 Mater. Res. Bull. 76 107

    [20]

    Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel M P 2008 Scr. Mater. 58 251

    [21]

    Rull-Bravo M, Moure A, Fernández J F, Martín-González M 2015 RSC Adv. 5 41653.

    [22]

    Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek. A, Puchegger.S, Soprunyuk.V, Schranz.W, Bauer.E, Müller.H, Zehetbauer.M, Rogl.P 2016 Acta Mater. 107 178.

    [23]

    Silpawilawan W, Kurosaki K, Ohishi Y, Muta.H, Yamanaka.S 2017 J. Mater. Chem. C 5 6677

    [24]

    Poon S J 2018 Metals 8 989

    [25]

    He H L, Zhao Y B, Ren H R, Niu C P, Fang Z X, Wu Y, Rong M Z 2022 Appl. Therm. Eng. 215 118900

    [26]

    Nozariasbmarz A, Saparamadu U, Li W, Kang H B, Dettor C, Zhu H T, Poudel B, Priya S 2021 J. Power Sources 493 229695

    [27]

    Yu J J, Xing Y F, Hu C L, Huang Z J, Qiu Q Y, Wang C, Xia K Y, Wang Z Y, Bai S Q, Zhao X B, Chen L D, Zhu T J. 2020 Adv. Energy Mater. 10 2000888.

    [28]

    Xing Y F, Liu R H, Liao J C, Zhang Q H, Xia X G, Wang C, Huang H, Chu J, Gu M, Zhu T J, Zhu C X, Xu F F, Yao D X, Zeng Y P, Bai S Q, Uher C, Chen L D 2019 Energy Environ. Sci. 12 3390

    [29]

    Miao P, Han S, Gao Z H, Fu C G, Zhu T J 2022 Mater. China 41 1029 (in Chinese) [苗圃,韩屾,高梓恒,付晨光,朱铁军 2022中国材料进展41 1029]

    [30]

    Moh'd A A N, Tashtoush B M, Jaradat A A 2015 Energy 90 1239

    [31]

    Chen W H, Huang S R, Wang X D, Wu P H, Lin Y L 2017 Energy 133 257

    [32]

    Meng F K, Chen L G, Sun F R 2016 Low-Carbon Technol. 11 375

    [33]

    Ouyang Z, Li D 2016 Scientific reports 6 24123

  • [1] 李其柱, 范浩涵, 高梓恒, 南鹏飞, 朱铁军, 葛炳辉. 原位加热诱导Nb扩散引起Nb0.8CoSb有序度的转变. 物理学报, doi: 10.7498/aps.73.20240325
    [2] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, doi: 10.7498/aps.70.20210726
    [3] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, doi: 10.7498/aps.69.20191755
    [4] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, doi: 10.7498/aps.64.114501
    [5] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, doi: 10.7498/aps.64.054401
    [6] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, doi: 10.7498/aps.63.214401
    [7] 王哲, 王发展, 王欣, 何银花, 马姗, 吴振. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟. 物理学报, doi: 10.7498/aps.63.076101
    [8] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, doi: 10.7498/aps.62.228101
    [9] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, doi: 10.7498/aps.62.204702
    [10] 李芸, 孙华. 开口共振环型球状变形器的设计与模拟. 物理学报, doi: 10.7498/aps.60.094103
    [11] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, doi: 10.7498/aps.59.2582
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, doi: 10.7498/aps.58.3268
    [13] 王晓南, 邸洪双, 梁冰洁, 夏小明. 热连轧粗轧调宽轧制过程边角部金属流动三维数值模拟. 物理学报, doi: 10.7498/aps.58.84
    [14] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, doi: 10.7498/aps.58.3474
    [15] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, doi: 10.7498/aps.57.3048
    [16] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟. 物理学报, doi: 10.7498/aps.57.5928
    [17] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, doi: 10.7498/aps.56.321
    [18] 江慧丰, 张青川, 陈忠家, 伍小平. 退火铝合金中Portevin-Le Chatelier效应的数值模拟研究. 物理学报, doi: 10.7498/aps.55.2856
    [19] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, doi: 10.7498/aps.55.1502
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-19

/

返回文章
返回