搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强场多光子跃迁干涉方法探测原子分子电离时间延迟

卫孟昊 李兴 罗嗣佐 赫兰海 丁大军

引用本文:
Citation:

强场多光子跃迁干涉方法探测原子分子电离时间延迟

卫孟昊, 李兴, 罗嗣佐, 赫兰海, 丁大军

Detection of ionization time-delay in atoms and molecules by strong-field multiphoton transition interferometry

WEI Menghao, LI Xing, LUO Sizuo, HE Lanhai, DING Dajun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 阿秒电离动力学作为超快科学的重要研究方向, 其关键实验方法与理论模型的突破对于揭示物质的超快演化过程具有重要的科学意义. 强场多光子跃迁干涉方法是该领域的前沿技术之一, 利用量子路径干涉原理实现对强场多光子电离动力学过程的阿秒时间分辨探测, 已广泛应用于从原子到复杂分子体系中量子态分辨的阿秒级电离延迟测量与表征, 为强场物理研究提供了全新的时间分辨视角. 本文围绕强场多光子跃迁干涉方法在原子与分子强场多光子电离时间延迟探测中的应用展开, 系统阐述该方法的量子干涉机制, 总结近年来原子分子阈上电离动力学及共振量子态间阿秒级时间延迟研究方面的最新进展, 并展望了该技术在未来可能的应用前景与面临的挑战.
    Attosecond ionization dynamics, a central topic in ultrafast science, largely depends on advances in experimental techniques and theoretical modeling to reveal the fundamental processes that control the evolution of matter on an ultrafast timescale. Among the cutting-edge approaches in this field, the strong-field multiphoton transition interferometry (SFMPTI) method stands out due to its ability to detect multiphoton ionization dynamics with attosecond time resolution via quantum path interference. This technique has been widely applied to the attosecond-scale measurements and characterizations of ionization time delays with quantum-state specificity, ranging from atomic systems to complex molecules. It provides a novel time-domain perspective in the study of strong-field physics. This article focuses on the application of the SFMPTI in probing strong-field multiphoton ionization time delays in atoms and molecules. We systematically present the quantum interference mechanisms behind the method: electrons undergo multi-photon above-threshold ionization (ATI) driven by a 400 nm laser pulse, while an additional 800 nm laser pulse induces the sideband signals through two-color interference. The relative phases encoding of these sidebands provides precise timing information about the ionization process. Furthermore, we summarize the recent advances in attosecond-resolved investigations of ATI dynamics and resonance-state-mediated time delays. For instance, the significant influence of resonance-enhanced multiphoton ionization (REMPI) processes involving different intermediate states in Ar atoms on ionization time delays is elucidated, highlighting the important influences of Freeman resonances on photoelectron emission dynamics in strong laser fields. Additionally, nuclear vibrations in NO molecules change ionization trajectories via nonadiabatic coupling of potential energy surfaces, leading to variations in time delay. Notably, the substantial influence of internuclear distance on ionization delay highlights the high sensitivity of electron-nuclear co-evolution to ultrafast phenomena. Finally, we discuss the potential applications and remaining challenges of this emerging technique, which will continue to open up new avenues for exploring attosecond electron dynamics in complex systems.
  • 图 1  强场多光子跃迁干涉方法的光路图

    Fig. 1.  Schematic of the strong-field multiphoton transition interferometry (SFMPTI) setup.

    图 2  调控光场相位测量光电子边带 (a)双色场重合区相位扫描中的Ar+产率; (b1) Ar原子在400 nm激光下的光电子成像; (b2), (b3) Ar原子在双色激光场中不同相位点下的光电子成像

    Fig. 2.  Phase-controlled measurement of photoelectron sidebands: (a) Ar+ yield as a function of phase delay in the overlapping region of the two-color laser field; (b1) photoelectron imaging of Ar atoms under a 400 nm laser field; (b2), (b3) photoelectron imaging of Ar atoms at different relative phases of the two-color laser field.

    图 3  Ar原子在强场中电离实验和理论结果[47] (a)单400 nm激光作用下的光电子二维动量分布; (b)双色激光场中Ar光电子二维动量分布; (c)—(f)相应的400 nm激光场和双色激光场实验测量和理论计算得到的光电子能谱

    Fig. 3.  Experimental and theoretical results of strong-field ionization of Ar atoms[47]: (a) Photoelectron momentum distribution under a single 400 nm laser field; (b) photoelectron momentum distribution in a two-color laser field; (c)–(f) The measured and calculated photoelectron spectra at the single 400-nm field and the TC field, respectively.

    图 4  Ar原子光电子能量-相位谱的实验和理论比较[47] (a)低光强条件下的实验和理论的光电子能谱; (b), (c)为双色场中实验和理论的光电子二位能量-相位谱;(d), (e)对应(b), (c)的数据计算得到的能谱非对称度

    Fig. 4.  Experimental and theoretical comparison of photoelectron energy-phase spectra of Ar atoms[47]: (a) Photoelectron spectra under low laser intensity, comparing experiment and theory; (b), (c) two-dimensional energy-phase spectra of photoelectrons in two-color laser field from experiment and theory, respectively; (d), (e) energy spectrum asymmetries calculated from (b) and (c), respectively.

    图 5  Ar 原子在双色场中多光子电离相对延迟结果[47] (a), (b)高光强下(a)实验测量和(b)理论模拟的光电子能谱; (c)两种光强中多光子电离的 ATIs 和边带的相对相位(时间)延迟

    Fig. 5.  Relative delay results of multiphoton ionization of Ar atoms in a two-color laser field[47]: (a) Experimental and (b) theoretical photoelectron energy spectra under high laser intensity; (c) relative phase (time) delay of ATI peaks and sidebands at two laser intensities.

    图 6  Ar 原子多光子电离中共振通道间的相对时间延迟[47]

    Fig. 6.  Extracted relative time delays between resonant ionization channels in the multiphoton ionization of Ar atoms[47]

    图 7  (a)实验装置示意图; (b) NO分子势能曲线[45]

    Fig. 7.  (a) Schematic of the experimental setup; (b) potential energy curves of the NO molecule[45].

    图 8  (a), (b)测量和模拟的光电子能谱; (c)光电子能谱; (d)不对称度[45]

    Fig. 8.  (a), (b)Measured and simulated photoelectron spectra, respectively; (c) photoelectron energy spectra; (d) asymmetry[45].

    图 9  (a)各光电子峰相对相位图; (b) $ {{\text{A}}^2}{\Sigma ^ + } $和$ {{\text{B}}^2}\Pi $共振形成的边带的相对相位; (c) $ {{\text{A}}^2}{\Sigma ^ + } $, $ {{\text{B}}^2}\Pi $和(d)离子态$ {{\text{X}}^1}{\Sigma ^ + } $不同振动态波函数的绝对值平方[45]

    Fig. 9.  (a) Relative phases of each photoelectron peak; (b)relative phases of the sidebands formed by the resonance of $ {{\text{A}}^2}{\Sigma ^ + } $ and $ {{\text{B}}^2}\Pi $ states; (c), (d) absolute squares of the vibrational wave functions for different vibrational levels of the neutral and ionic states, respectively[45].

    图 10  (a)测量得到的从+y轴发射的光电子相位积分角度分布; (b)对应于$ {{\text{A}}^2}{\Sigma ^ + } $态的两个边带相位角度依赖的比较; (c)对应于$ {{\text{B}}^2}\Pi $的两个边带相位角度依赖的比较, $ {\nu }''=1, 2, 3 $表示NO+的不同振动态[45]

    Fig. 10.  (a) Measured phase-integrated angular distribution of photoelectrons emitted along the +y axis; (b) comparison of angle-dependent phases retrieved for two sidebands of the $ {{\text{A}}^2}{\Sigma ^ + } $states; (c) same as Fig. (b), but for sidebands of the $ {{\text{B}}^2}\Pi $ states, $ {\nu }''=1, 2, 3 $ denotes different vibrational states of the NO+[45].

  • [1]

    Maiman T 1960 Phys. Rev. Lett. 4 564Google Scholar

    [2]

    Pilipovich V A, Morgun Y F 1965 J. Appl. Spectrosc. 3 67Google Scholar

    [3]

    DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar

    [4]

    Shank C V, Ippen E P 1974 Appl. Phys. Lett. 24 373Google Scholar

    [5]

    Maine P, Strickland D, Bado P, Pessot M, Mourou G 1988 IEEE J. Quantum Electron. 24 398Google Scholar

    [6]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [7]

    Zewail A H 1990 Sci. Am. 263 76

    [8]

    Zewail A H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [9]

    Zewail A H, Bernstein R B 1988 Chem. Eng. News 66 24

    [10]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [11]

    Herschbach D R 1987 Angew. Chem. Int. Ed. 26 1221Google Scholar

    [12]

    Lee Y T 1987 Science 236 793Google Scholar

    [13]

    Zare R N, Bernstein R B 1980 Phys. Today 33 43Google Scholar

    [14]

    Ueda K, Eland J H D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S839Google Scholar

    [15]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445Google Scholar

    [16]

    Arasaki Y, Takatsuka K, Wang K, McKoy V 2010 J. Chem. Phys. 132 124307Google Scholar

    [17]

    Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208Google Scholar

    [18]

    Ditmire T, Donnelly T, Falcone R W, Perry M D 1995 Phys. Rev. Lett. 75 3122Google Scholar

    [19]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [20]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [21]

    Golde D, Meier T, Koch S W 2008 Phys. Rev. B 77 075330Google Scholar

    [22]

    Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31Google Scholar

    [23]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [24]

    Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nat. Phys. 7 428Google Scholar

    [25]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [26]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76Google Scholar

    [27]

    Li X K, Liu X W, Wang C C, Ben S, Zhou S P, Yang Y Z, Song X H, Chen J, Yang W F, Ding D J 2024 Light Sci. Appl. 13 250Google Scholar

    [28]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [29]

    Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029Google Scholar

    [30]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75Google Scholar

    [31]

    Sommer A, Bothschafter E M, Sato S A, Jakubeit C, Latka T, Razskazovskaya O, Fattahi H, Jobst M, Schweinberger W, Shirvanyan V, Yakovlev V S, Kienberger R, Yabana K, Karpowicz N, Schultze M, Krausz F 2016 Nature 534 86Google Scholar

    [32]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [33]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [34]

    Jiménez-Galán Á, Argenti L, Martín F 2014 Phys. Rev. Lett. 113 263001Google Scholar

    [35]

    Aseyev S A, Ni Y, Frasinski L J, Muller H G, Vrakking M J J 2003 Phys. Rev. Lett. 91 223902Google Scholar

    [36]

    Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [37]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [38]

    Dahlström J M, Guénot D, Klünder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taïeb R 2013 Chem. Phys. 414 53Google Scholar

    [39]

    Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martín F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762Google Scholar

    [40]

    Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060Google Scholar

    [41]

    Eisenbud L 1948 The Formal Properties of Nuclear Collisions Ph. D. Dissertation (Princeton: Princeton University

    [42]

    Wigner E P 1955 Phys. Rev. 98 145Google Scholar

    [43]

    Smith F T 1960 Phys. Rev. 118 349Google Scholar

    [44]

    Zipp L J, Natan A, Bucksbaum P H 2014 Optica 1 361Google Scholar

    [45]

    Li X, Liu Y, Zhang D D, He L H, Luo S Z, Shu C C, Ding D J 2023 Phys. Rev. A 108 023114Google Scholar

    [46]

    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S, Pons B, Porat G, Ruchon T, Taïeb R, Blanchet V, Mairesse Y 2017 Science 358 1288Google Scholar

    [47]

    Li X, Gao X H, Li W K, Yang T, Zhang D D, He L H, Luo S Z, Zhao S F, Ding D J 2024 Phys. Rev. A 109 013103Google Scholar

    [48]

    Han M, Liang H, Ge P P, Fang Y Q, Guo Z N, Yu X Y, Deng Y K, Peng L Y, Gong Q H, Liu Y Q 2020 Phys. Rev. A 102 061101Google Scholar

    [49]

    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar

    [50]

    Johnson P M 1980 Acc. Chem. Res. 13 20Google Scholar

    [51]

    Bebb H B, Gold A 1966 Phys. Rev. 143 1Google Scholar

    [52]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [53]

    Swoboda M, Dahlström J M, Ruchon T, Johnsson P, Mauritsson J, L’Huillier A, Schafer K J 2009 Laser. Phys. 19 1591Google Scholar

    [54]

    Song X H, Xu J W, Lin C, Sheng Z H, Liu P, Yu X H, Zhang H T, Yang W F, Hu S L, Chen J, Xu S P, Chen Y J, Qua W, Liu X J 2017 Phys. Rev. A 95 033426Google Scholar

    [55]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [56]

    Ge P P, Han M, Liu M M, Gong Q H, Liu Y Q 2018 Phys. Rev. A 98 013409Google Scholar

    [57]

    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [58]

    Saloman E B 2010 J. Phys. Chem. Ref. Data 39 033101Google Scholar

    [59]

    Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092Google Scholar

    [60]

    Su J, Ni H, Jaroń-Becker A, Becker A 2014 Phys. Rev. Lett. 113 263002Google Scholar

    [61]

    Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101Google Scholar

    [62]

    Kheifets A S 2021 Phys. Rev. A 104 L021103Google Scholar

    [63]

    Yu X, Wang N, Lei J T, Shao J X, Morishita T, Zhao S F, Najjari B, Ma X W, Zhang S F 2022 Phys. Rev. A 106 023114Google Scholar

    [64]

    Maharjan C, Alnaser A, Litvinyuk I, Ranitovic P, Cocke C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1955Google Scholar

    [65]

    Bertolino M, Dahlström J M 2021 Phys. Rev. Research 3 013270Google Scholar

    [66]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel P, Gisselbrecht M, L’Huillier A 2017 Science 358 893Google Scholar

    [67]

    López S D, Donsa S, Nagele S, Arbó D, Burgdörfer J 2021 Phys. Rev. A 104 043113Google Scholar

    [68]

    Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 183001Google Scholar

    [69]

    Bharti D, Atri-Schuller D, Menning G, Hamilton K R, Moshammer R, Pfeifer T, Douguet N, Bartschat K, Harth A 2021 Phys. Rev. A 103 022834Google Scholar

    [70]

    Borràs V J, González-Vázquez J, Argenti L, Martín F 2023 Sci. Adv. 9 eade3855Google Scholar

    [71]

    Patchkovskii S, Benda J, Ertel D, Busto D 2023 Phys. Rev. A 107 043105Google Scholar

    [72]

    Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201Google Scholar

    [73]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119Google Scholar

    [74]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [75]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326Google Scholar

    [76]

    Holzmeier F, Joseph J, Houver J C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343Google Scholar

    [77]

    Piancastelli M N 1999 J. Electron. Spectrosc. Relat. Phenom. 100 167Google Scholar

    [78]

    Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001Google Scholar

    [79]

    Kamalov A, Wang A L, Bucksbaum P H, Haxton D J, Cryan J P 2020 Phys. Rev. A 102 023118Google Scholar

    [80]

    Guo Z N, Ge P P, Fang Y Q, Dou Y K, Yu X Y, Wang J G, Gong Q H, Liu Y Q 2022 Ultrafast Sci. 2022 9802917

    [81]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar

    [82]

    Wallace S, Dill D, Dehmer J L 1982 J. Chem. Phys. 76 1217Google Scholar

    [83]

    Wang B X, Liu B K, Wang Y Q, Wang L 2010 Phys. Rev. A 81 043421Google Scholar

    [84]

    Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S, Squibb R J, Zhong S, Eng-Johnsson P, Arnold C L, Feifel R, Gisselbrecht M, Lindroth E, L’Huillier A 2022 Front. Phys. 10 964586Google Scholar

    [85]

    Rist J, Klyssek K, Novikovskiy N M, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A, Melzer N, Schwarz C, Anders N, Kaiser L, Fehre K, Hartung A, Eckart S, Schmidt L P H, Schöffler M S, Davis V T, Williams J B, Trinter F, Dörner R, Demekhin P V, Jahnke T 2021 Nat. Commun. 12 6657Google Scholar

    [86]

    Hu W H, Liu Y, Luo S Z, Li X, Yu J Q, Li X K, Sun Z G, Yuan K J, Bandrauk A D, Ding D J 2019 Phys. Rev. A 99 011402Google Scholar

    [87]

    Liu Y, Hu W H, Luo S Z, Yuan K J, Sun Z G, Bandrauk A D, Ding D J 2019 Phys. Rev. A 100 023404Google Scholar

    [88]

    Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Inoue D, Hashizume D, Iwasa Y 2017 Nat. Commun. 8 14465Google Scholar

    [89]

    Naaman R, Waldeck D H 2015 Annu. Rev. Phys. Chem. 66 263Google Scholar

  • [1] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [2] 王慧勇, 李铭轩, 罗嗣佐, 丁大军. 高能量分辨光电子干涉仪研究进展. 物理学报, doi: 10.7498/aps.74.20250534
    [3] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, doi: 10.7498/aps.73.20240646
    [4] 王景哲, 董福龙, 刘杰. 时间延迟双色飞秒激光中$\text{H}_2^+$的解离动力学研究. 物理学报, doi: 10.7498/aps.73.20241283
    [5] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用. 物理学报, doi: 10.7498/aps.71.20221296
    [6] 徐一丹, 姜雯昱, 童继红, 韩露露, 左子潭, 许理明, 宫晓春, 吴健. NO分子形状共振阿秒动力学精密测量. 物理学报, doi: 10.7498/aps.71.20221735
    [7] 罗晓飞, 王波, 彭宽, 肖嘉莹. 基于聚焦声场模型的光声层析成像时间延迟快速校正反投影方法. 物理学报, doi: 10.7498/aps.71.20212019
    [8] 赵新军, 李九智, 蒋中英. 时间延迟对细胞周期动力学的影响. 物理学报, doi: 10.7498/aps.70.20210323
    [9] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, doi: 10.7498/aps.68.20181811
    [10] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, doi: 10.7498/aps.67.20181468
    [11] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, doi: 10.7498/aps.67.20181334
    [12] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, doi: 10.7498/aps.65.053302
    [13] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为. 物理学报, doi: 10.7498/aps.64.163601
    [14] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, doi: 10.7498/aps.63.047901
    [15] 杨林静. Logistic系统跃迁率的时间延迟效应. 物理学报, doi: 10.7498/aps.60.050502
    [16] 林灵, 闫勇, 梅冬成. 时间延迟增强双稳系统的共振抑制. 物理学报, doi: 10.7498/aps.59.2240
    [17] 曹 宁, 龙拥兵, 张治国, 高丽娟, 袁 洁, 赵伯儒, 赵士平, 杨乾生, 赵继民, 傅盘铭. 电子型掺杂高温超导体La2-xCexCuO4飞秒时间分辨动力学研究. 物理学报, doi: 10.7498/aps.57.2543
    [18] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, doi: 10.7498/aps.54.3200
    [19] 黄显高, 徐健学, 黄伟, 朱甫臣. 混沌系统的时间延迟同步误差分析. 物理学报, doi: 10.7498/aps.50.2296
    [20] 朱荣, 韩景诚, 关一夫, 刘厚祥, 李书涛, 吴存恺. 乙醛紫外多光子电离动力学研究. 物理学报, doi: 10.7498/aps.36.459
计量
  • 文章访问数:  1512
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-16
  • 修回日期:  2025-06-10
  • 上网日期:  2025-06-18

/

返回文章
返回