-
阿秒电离动力学作为超快科学的重要研究方向,其关键实验方法与理论模型的突破对于揭示物质的超快演化过程具有重要的科学意义。强场多光子跃迁干涉方法是该领域的前沿技术之一,利用量子路径干涉原理实现对强场多光子电离动力学过程的阿秒时间分辨探测,已广泛应用于从原子到复杂分子体系中量子态分辨的阿秒级电离延迟测量与表征,为强场物理研究提供了全新的时间分辨视角。本文围绕强场多光子跃迁干涉方法在原子与分子强场多光子电离时间延迟探测中的应用展开,系统阐述该方法的量子干涉机制,总结近年来原子分子阈上电离动力学及共振量子态间阿秒级时间延迟研究方面的最新进展,并展望了该技术在未来可能的应用前景与面临的挑战。
-
关键词:
- 强场多光子跃迁干涉方法 /
- 电离时间延迟 /
- 阿秒电子动力学
Attosecond ionization dynamics, as a key research direction in ultrafast science, relies critically on breakthroughs in both experimental techniques and theoretical models to reveal the fundamental processes underlying ultrafast matter evolution. Among the cutting-edge approaches in this field, the strong-field multiphoton transition interferometry (SFMPTI) method stands out for its ability to achieve attosecond time-resolved probing of multiphoton ionization dynamics via quantum path interference. This technique has been widely applied to attosecond-scale measurements and characterizations of ionization time delays with quantum state resolution, ranging from atomic systems to complex molecules, offering a novel time-resolved perspective for strong-field physics.This article focuses on the application of the SFMPTI method in probing strong-field multiphoton ionization time delays in atoms and molecules. We systematically present the quantum interference mechanisms underlying the method, summarize recent progress in attosecond-resolved studies of above-threshold ionization dynamics and resonance-state-mediated delays, and discuss the prospective applications and challenges that lie ahead for this emerging technique.-
Keywords:
- Strong-field multiphoton transition interferometry /
- Ionization time-delay /
- Attosecond electron dynamics
-
[1] Maiman T 1960 Phys. Rev. Lett. 4 564
[2] Pilipovich V, Morgun Y F 1965 J. Appl. Spectrosc. 3 67
[3] DeMaria A, Stetser D, Heynau H 1966 Appl. Phys. Lett. 8 174
[4] Shank C, Ippen E 1974 Appl. Phys. Lett. 24 373
[5] Maine P, Strickland D, Bado P, Pessot M, Mourou G 1988 IEEE J. Quantum Electron. 24 398
[6] Strickland D, Mourou G 1985 Opt. Commun. 55 447
[7] Zewail A H 1990 Sci. Am. 263 76
[8] Zewail A H 2000 J. Phys. Chem. A 104 5660
[9] Zewail A H, Bernstein R B 1988 Chem. Eng. News. 66 24
[10] Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42
[11] Herschbach D R 1987 Angew. Chem. Int. Ed. 26 1221
[12] Lee Y T 1987 Science 236 793
[13] Zare R N, Bernstein R B 1980 Phys. Today 33 43
[14] Ueda K, Eland J H 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S839
[15] Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445
[16] Arasaki Y, Takatsuka K, Wang K, McKoy V 2010 J. Chem. Phys. 132
[17] Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V 2011 Science 334 208
[18] Ditmire T, Donnelly T, Falcone R, Perry M 1995 Phys. Rev. Lett. 75 3122
[19] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138
[20] Paul P-M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689
[21] Golde D, Meier T, Koch S W 2008 Phys. Rev. B Condens. Matter Mater. Phys.77 075330
[22] Ferray M, L'Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31
[23] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
[24] Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nat. Phys. 7 428
[25] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565
[26] Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76
[27] Li X, Liu X, Wang C, Ben S, Zhou S, Yang Y, Song X, Chen J, Yang W, Ding D 2024 Light Sci. Appl. 13 250
[28] Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L, Prendergast D, Yabana K 2014 Science 346 1348
[29] Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S 2007 Nature 449 1029
[30] Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S 2013 Nature 493 75
[31] Sommer A, Bothschafter E, Sato S, Jakubeit C, Latka T, Razskazovskaya O, Fattahi H, Jobst M, Schweinberger W, Shirvanyan V 2016 Nature 534 86
[32] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803
[33] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
[34] Jiménez-Galán Á, Argenti L, Martín F 2014 Phys. Rev. Lett. 113 263001
[35] Aseyev S, Ni Y, Frasinski L, Muller H, Vrakking M 2003 Phys. Rev. Lett. 91 223902
[36] Mairesse Y, De Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B 2003 Science 302 1540
[37] Klünder K, Dahlström J, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002
[38] Dahlström J M, Guénot D, Klünder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taïeb R 2013 Chem. Phys. 414 53
[39] Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C, Squibb R, Feifel R 2020 Sci. Adv. 6 eaba7762
[40] Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060
[41] Einstein A 1905Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (Albert Einstein-Gesellschaft)
[42] Eisenbud L 1948The formal properties of nuclear collisions (Princeton University)
[43] Wigner E P 1955 Phys. Rev. 98 145
[44] Smith F T 1960 Phys. Rev. 118 349
[45] Zipp L J, Natan A, Bucksbaum P H 2014 Optica 1 361
[46] Li X, Liu Y, Zhang D, He L, Luo S, Shu C-C, Ding D 2023 Phys. Rev. A 108 023114
[47] Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S 2017 Science 358 1288
[48] Li X, Gao X, Li W, Yang T, Zhang D, He L, Luo S, Zhao S-F, Ding D 2024 Phys. Rev. A 109 013103
[49] Han M, Liang H, Ge P, Fang Y, Guo Z, Yu X, Deng Y, Peng L-Y, Gong Q, Liu Y 2020 Phys. Rev. A 102 061101
[50] Song X, Shi G, Zhang G, Xu J, Lin C, Chen J, Yang W 2018 Phys. Rev. Lett. 121 103201
[51] Johnson P M 1980 Acc. Chem. Res. 13 20
[52] Bebb H B, Gold A 1966 Phys. Rev. 143 1
[53] Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127
[54] Swoboda M, Dahlström J, Ruchon T, Johnsson P, Mauritsson J, L’Huillier A, Schafer K 2009 Laser. Phys. 19 1591
[55] Song X, Xu J, Lin C, Sheng Z, Liu P, Yu X, Zhang H, Yang W, Hu S, Chen J 2017 Phys. Rev. A 95 033426
[56] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J, Smolkowska A, Logman P, Lepine F, Cauchy C, Zamith S, Marchenko T 2011 Science 331 61
[57] Ge P, Han M, Liu M-M, Gong Q, Liu Y 2018 Phys. Rev. A 98 013409
[58] Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y 2017 Phys. Rev. Lett. 118 143203
[59] Saloman E B 2010 J. Phys. Chem. Ref. Data. 39
[60] Freeman R, Bucksbaum P, Milchberg H, Darack S, Schumacher D, Geusic M 1987 Phys. Rev. Lett. 59 1092
[61] Su J, Ni H, Jaroń-Becker A, Becker A 2014 Phys. Rev. Lett. 113 263002
[62] Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101
[63] Kheifets A S 2021 Phys. Rev. A 104 L021103
[64] Yu X, Wang N, Lei J-T, Shao J-X, Morishita T, Zhao S-F, Najjari B, Ma X-W, Zhang S-F 2022 Phys. Rev. A 106 023114
[65] Maharjan C, Alnaser A, Litvinyuk I, Ranitovic P, Cocke C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1955
[66] Bertolino M, Dahlström J M 2021 Phys. Rev. Res. 3 013270
[67] Isinger M, Squibb R, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C, Miranda M, Dahlström J M 2017 Science 358 893
[68] López S D, Donsa S, Nagele S, Arbó D, Burgdörfer J 2021 Phys. Rev. A 104 043113
[69] Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 183001
[70] Bharti D, Atri-Schuller D, Menning G, Hamilton K R, Moshammer R, Pfeifer T, Douguet N, Bartschat K, Harth A 2021 Phys. Rev. A 103 022834
[71] Borràs V J, González-Vázquez J, Argenti L, Martín F 2023 Sci. Adv. 9 eade3855
[72] Patchkovskii S, Benda J, Ertel D, Busto D 2023 Phys. Rev. A 107 043105
[73] Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201
[74] Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119
[75] Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733
[76] Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326
[77] Holzmeier F, Joseph J, Houver J-C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343
[78] Piancastelli M 1999 J. Electron. Spectrosc. Relat. Phenom. 100 167
[79] Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001
[80] Kamalov A, Wang A L, Bucksbaum P H, Haxton D J, Cryan J P 2020 Phys. Rev. A 102 023118
[81] Guo Z, Ge P, Fang Y, Dou Y, Yu X, Wang J, Gong Q, Liu Y 2022 Ultrafast Sci.
[82] Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R 2021 Nat. Commun. 12 1697
[83] Wallace S, Dill D, Dehmer J L 1982 J. Chem. Phys. 76
[84] Wang B, Liu B, Wang Y, Wang L 2010 Phys. Rev. A: At. Mol. Opt. Phys. 81 043421
[85] Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S 2022 Front. Phys. 10 964586
[86] Rist J, Klyssek K, Novikovskiy N M, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A 2021 Nat. Commun. 12 6657
[87] Hu W, Liu Y, Luo S, Li X, Yu J, Li X, Sun Z, Yuan K-J, Bandrauk A D, Ding D 2019 Phys. Rev. A 99 011402
[88] Liu Y, Hu W, Luo S, Yuan K-J, Sun Z, Bandrauk A D, Ding D 2019 Phys. Rev. A 100 023404
[89] Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Inoue D, Hashizume D, Iwasa Y 2017 Nat. Commun. 8 14465
[90] Naaman R, Waldeck D H 2015 Annu. Rev. Phys. Chem. 66 263
计量
- 文章访问数: 12
- PDF下载量: 0
- 被引次数: 0