-
阿秒电离动力学作为超快科学的重要研究方向, 其关键实验方法与理论模型的突破对于揭示物质的超快演化过程具有重要的科学意义. 强场多光子跃迁干涉方法是该领域的前沿技术之一, 利用量子路径干涉原理实现对强场多光子电离动力学过程的阿秒时间分辨探测, 已广泛应用于从原子到复杂分子体系中量子态分辨的阿秒级电离延迟测量与表征, 为强场物理研究提供了全新的时间分辨视角. 本文围绕强场多光子跃迁干涉方法在原子与分子强场多光子电离时间延迟探测中的应用展开, 系统阐述该方法的量子干涉机制, 总结近年来原子分子阈上电离动力学及共振量子态间阿秒级时间延迟研究方面的最新进展, 并展望了该技术在未来可能的应用前景与面临的挑战.
-
关键词:
- 强场多光子跃迁干涉方法 /
- 电离时间延迟 /
- 阿秒电子动力学
Attosecond ionization dynamics, a central topic in ultrafast science, largely depends on advances in experimental techniques and theoretical modeling to reveal the fundamental processes that control the evolution of matter on an ultrafast timescale. Among the cutting-edge approaches in this field, the strong-field multiphoton transition interferometry (SFMPTI) method stands out due to its ability to detect multiphoton ionization dynamics with attosecond time resolution via quantum path interference. This technique has been widely applied to the attosecond-scale measurements and characterizations of ionization time delays with quantum-state specificity, ranging from atomic systems to complex molecules. It provides a novel time-domain perspective in the study of strong-field physics. This article focuses on the application of the SFMPTI in probing strong-field multiphoton ionization time delays in atoms and molecules. We systematically present the quantum interference mechanisms behind the method: electrons undergo multi-photon above-threshold ionization (ATI) driven by a 400 nm laser pulse, while an additional 800 nm laser pulse induces the sideband signals through two-color interference. The relative phases encoding of these sidebands provides precise timing information about the ionization process. Furthermore, we summarize the recent advances in attosecond-resolved investigations of ATI dynamics and resonance-state-mediated time delays. For instance, the significant influence of resonance-enhanced multiphoton ionization (REMPI) processes involving different intermediate states in Ar atoms on ionization time delays is elucidated, highlighting the important influences of Freeman resonances on photoelectron emission dynamics in strong laser fields. Additionally, nuclear vibrations in NO molecules change ionization trajectories via nonadiabatic coupling of potential energy surfaces, leading to variations in time delay. Notably, the substantial influence of internuclear distance on ionization delay highlights the high sensitivity of electron-nuclear co-evolution to ultrafast phenomena. Finally, we discuss the potential applications and remaining challenges of this emerging technique, which will continue to open up new avenues for exploring attosecond electron dynamics in complex systems.-
Keywords:
- strong-field multiphoton transition interferometry /
- ionization time-delay /
- attosecond electron dynamics
-
图 2 调控光场相位测量光电子边带 (a)双色场重合区相位扫描中的Ar+产率; (b1) Ar原子在400 nm激光下的光电子成像; (b2), (b3) Ar原子在双色激光场中不同相位点下的光电子成像
Fig. 2. Phase-controlled measurement of photoelectron sidebands: (a) Ar+ yield as a function of phase delay in the overlapping region of the two-color laser field; (b1) photoelectron imaging of Ar atoms under a 400 nm laser field; (b2), (b3) photoelectron imaging of Ar atoms at different relative phases of the two-color laser field.
图 3 Ar原子在强场中电离实验和理论结果[47] (a)单400 nm激光作用下的光电子二维动量分布; (b)双色激光场中Ar光电子二维动量分布; (c)—(f)相应的400 nm激光场和双色激光场实验测量和理论计算得到的光电子能谱
Fig. 3. Experimental and theoretical results of strong-field ionization of Ar atoms[47]: (a) Photoelectron momentum distribution under a single 400 nm laser field; (b) photoelectron momentum distribution in a two-color laser field; (c)–(f) The measured and calculated photoelectron spectra at the single 400-nm field and the TC field, respectively.
图 4 Ar原子光电子能量-相位谱的实验和理论比较[47] (a)低光强条件下的实验和理论的光电子能谱; (b), (c)为双色场中实验和理论的光电子二位能量-相位谱;(d), (e)对应(b), (c)的数据计算得到的能谱非对称度
Fig. 4. Experimental and theoretical comparison of photoelectron energy-phase spectra of Ar atoms[47]: (a) Photoelectron spectra under low laser intensity, comparing experiment and theory; (b), (c) two-dimensional energy-phase spectra of photoelectrons in two-color laser field from experiment and theory, respectively; (d), (e) energy spectrum asymmetries calculated from (b) and (c), respectively.
图 5 Ar 原子在双色场中多光子电离相对延迟结果[47] (a), (b)高光强下(a)实验测量和(b)理论模拟的光电子能谱; (c)两种光强中多光子电离的 ATIs 和边带的相对相位(时间)延迟
Fig. 5. Relative delay results of multiphoton ionization of Ar atoms in a two-color laser field[47]: (a) Experimental and (b) theoretical photoelectron energy spectra under high laser intensity; (c) relative phase (time) delay of ATI peaks and sidebands at two laser intensities.
图 9 (a)各光电子峰相对相位图; (b) $ {{\text{A}}^2}{\Sigma ^ + } $和$ {{\text{B}}^2}\Pi $共振形成的边带的相对相位; (c) $ {{\text{A}}^2}{\Sigma ^ + } $, $ {{\text{B}}^2}\Pi $和(d)离子态$ {{\text{X}}^1}{\Sigma ^ + } $不同振动态波函数的绝对值平方[45]
Fig. 9. (a) Relative phases of each photoelectron peak; (b)relative phases of the sidebands formed by the resonance of $ {{\text{A}}^2}{\Sigma ^ + } $ and $ {{\text{B}}^2}\Pi $ states; (c), (d) absolute squares of the vibrational wave functions for different vibrational levels of the neutral and ionic states, respectively[45].
图 10 (a)测量得到的从+y轴发射的光电子相位积分角度分布; (b)对应于$ {{\text{A}}^2}{\Sigma ^ + } $态的两个边带相位角度依赖的比较; (c)对应于$ {{\text{B}}^2}\Pi $的两个边带相位角度依赖的比较, $ {\nu }''=1, 2, 3 $表示NO+的不同振动态[45]
Fig. 10. (a) Measured phase-integrated angular distribution of photoelectrons emitted along the +y axis; (b) comparison of angle-dependent phases retrieved for two sidebands of the $ {{\text{A}}^2}{\Sigma ^ + } $states; (c) same as Fig. (b), but for sidebands of the $ {{\text{B}}^2}\Pi $ states, $ {\nu }''=1, 2, 3 $ denotes different vibrational states of the NO+[45].
-
[1] Maiman T 1960 Phys. Rev. Lett. 4 564
Google Scholar
[2] Pilipovich V A, Morgun Y F 1965 J. Appl. Spectrosc. 3 67
Google Scholar
[3] DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174
Google Scholar
[4] Shank C V, Ippen E P 1974 Appl. Phys. Lett. 24 373
Google Scholar
[5] Maine P, Strickland D, Bado P, Pessot M, Mourou G 1988 IEEE J. Quantum Electron. 24 398
Google Scholar
[6] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[7] Zewail A H 1990 Sci. Am. 263 76
[8] Zewail A H 2000 J. Phys. Chem. A 104 5660
Google Scholar
[9] Zewail A H, Bernstein R B 1988 Chem. Eng. News 66 24
[10] Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42
Google Scholar
[11] Herschbach D R 1987 Angew. Chem. Int. Ed. 26 1221
Google Scholar
[12] Lee Y T 1987 Science 236 793
Google Scholar
[13] Zare R N, Bernstein R B 1980 Phys. Today 33 43
Google Scholar
[14] Ueda K, Eland J H D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S839
Google Scholar
[15] Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445
Google Scholar
[16] Arasaki Y, Takatsuka K, Wang K, McKoy V 2010 J. Chem. Phys. 132 124307
Google Scholar
[17] Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208
Google Scholar
[18] Ditmire T, Donnelly T, Falcone R W, Perry M D 1995 Phys. Rev. Lett. 75 3122
Google Scholar
[19] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138
Google Scholar
[20] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689
Google Scholar
[21] Golde D, Meier T, Koch S W 2008 Phys. Rev. B 77 075330
Google Scholar
[22] Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31
Google Scholar
[23] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
Google Scholar
[24] Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nat. Phys. 7 428
Google Scholar
[25] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565
Google Scholar
[26] Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76
Google Scholar
[27] Li X K, Liu X W, Wang C C, Ben S, Zhou S P, Yang Y Z, Song X H, Chen J, Yang W F, Ding D J 2024 Light Sci. Appl. 13 250
Google Scholar
[28] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348
Google Scholar
[29] Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029
Google Scholar
[30] Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75
Google Scholar
[31] Sommer A, Bothschafter E M, Sato S A, Jakubeit C, Latka T, Razskazovskaya O, Fattahi H, Jobst M, Schweinberger W, Shirvanyan V, Yakovlev V S, Kienberger R, Yabana K, Karpowicz N, Schultze M, Krausz F 2016 Nature 534 86
Google Scholar
[32] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803
Google Scholar
[33] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
Google Scholar
[34] Jiménez-Galán Á, Argenti L, Martín F 2014 Phys. Rev. Lett. 113 263001
Google Scholar
[35] Aseyev S A, Ni Y, Frasinski L J, Muller H G, Vrakking M J J 2003 Phys. Rev. Lett. 91 223902
Google Scholar
[36] Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003 Science 302 1540
Google Scholar
[37] Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002
Google Scholar
[38] Dahlström J M, Guénot D, Klünder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taïeb R 2013 Chem. Phys. 414 53
Google Scholar
[39] Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martín F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762
Google Scholar
[40] Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060
Google Scholar
[41] Eisenbud L 1948 The Formal Properties of Nuclear Collisions Ph. D. Dissertation (Princeton: Princeton University
[42] Wigner E P 1955 Phys. Rev. 98 145
Google Scholar
[43] Smith F T 1960 Phys. Rev. 118 349
Google Scholar
[44] Zipp L J, Natan A, Bucksbaum P H 2014 Optica 1 361
Google Scholar
[45] Li X, Liu Y, Zhang D D, He L H, Luo S Z, Shu C C, Ding D J 2023 Phys. Rev. A 108 023114
Google Scholar
[46] Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S, Pons B, Porat G, Ruchon T, Taïeb R, Blanchet V, Mairesse Y 2017 Science 358 1288
Google Scholar
[47] Li X, Gao X H, Li W K, Yang T, Zhang D D, He L H, Luo S Z, Zhao S F, Ding D J 2024 Phys. Rev. A 109 013103
Google Scholar
[48] Han M, Liang H, Ge P P, Fang Y Q, Guo Z N, Yu X Y, Deng Y K, Peng L Y, Gong Q H, Liu Y Q 2020 Phys. Rev. A 102 061101
Google Scholar
[49] Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201
Google Scholar
[50] Johnson P M 1980 Acc. Chem. Res. 13 20
Google Scholar
[51] Bebb H B, Gold A 1966 Phys. Rev. 143 1
Google Scholar
[52] Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127
Google Scholar
[53] Swoboda M, Dahlström J M, Ruchon T, Johnsson P, Mauritsson J, L’Huillier A, Schafer K J 2009 Laser. Phys. 19 1591
Google Scholar
[54] Song X H, Xu J W, Lin C, Sheng Z H, Liu P, Yu X H, Zhang H T, Yang W F, Hu S L, Chen J, Xu S P, Chen Y J, Qua W, Liu X J 2017 Phys. Rev. A 95 033426
Google Scholar
[55] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61
Google Scholar
[56] Ge P P, Han M, Liu M M, Gong Q H, Liu Y Q 2018 Phys. Rev. A 98 013409
Google Scholar
[57] Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203
Google Scholar
[58] Saloman E B 2010 J. Phys. Chem. Ref. Data 39 033101
Google Scholar
[59] Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092
Google Scholar
[60] Su J, Ni H, Jaroń-Becker A, Becker A 2014 Phys. Rev. Lett. 113 263002
Google Scholar
[61] Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101
Google Scholar
[62] Kheifets A S 2021 Phys. Rev. A 104 L021103
Google Scholar
[63] Yu X, Wang N, Lei J T, Shao J X, Morishita T, Zhao S F, Najjari B, Ma X W, Zhang S F 2022 Phys. Rev. A 106 023114
Google Scholar
[64] Maharjan C, Alnaser A, Litvinyuk I, Ranitovic P, Cocke C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1955
Google Scholar
[65] Bertolino M, Dahlström J M 2021 Phys. Rev. Research 3 013270
Google Scholar
[66] Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel P, Gisselbrecht M, L’Huillier A 2017 Science 358 893
Google Scholar
[67] López S D, Donsa S, Nagele S, Arbó D, Burgdörfer J 2021 Phys. Rev. A 104 043113
Google Scholar
[68] Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 183001
Google Scholar
[69] Bharti D, Atri-Schuller D, Menning G, Hamilton K R, Moshammer R, Pfeifer T, Douguet N, Bartschat K, Harth A 2021 Phys. Rev. A 103 022834
Google Scholar
[70] Borràs V J, González-Vázquez J, Argenti L, Martín F 2023 Sci. Adv. 9 eade3855
Google Scholar
[71] Patchkovskii S, Benda J, Ertel D, Busto D 2023 Phys. Rev. A 107 043105
Google Scholar
[72] Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201
Google Scholar
[73] Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119
Google Scholar
[74] Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733
Google Scholar
[75] Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326
Google Scholar
[76] Holzmeier F, Joseph J, Houver J C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343
Google Scholar
[77] Piancastelli M N 1999 J. Electron. Spectrosc. Relat. Phenom. 100 167
Google Scholar
[78] Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001
Google Scholar
[79] Kamalov A, Wang A L, Bucksbaum P H, Haxton D J, Cryan J P 2020 Phys. Rev. A 102 023118
Google Scholar
[80] Guo Z N, Ge P P, Fang Y Q, Dou Y K, Yu X Y, Wang J G, Gong Q H, Liu Y Q 2022 Ultrafast Sci. 2022 9802917
[81] Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697
Google Scholar
[82] Wallace S, Dill D, Dehmer J L 1982 J. Chem. Phys. 76 1217
Google Scholar
[83] Wang B X, Liu B K, Wang Y Q, Wang L 2010 Phys. Rev. A 81 043421
Google Scholar
[84] Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S, Squibb R J, Zhong S, Eng-Johnsson P, Arnold C L, Feifel R, Gisselbrecht M, Lindroth E, L’Huillier A 2022 Front. Phys. 10 964586
Google Scholar
[85] Rist J, Klyssek K, Novikovskiy N M, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A, Melzer N, Schwarz C, Anders N, Kaiser L, Fehre K, Hartung A, Eckart S, Schmidt L P H, Schöffler M S, Davis V T, Williams J B, Trinter F, Dörner R, Demekhin P V, Jahnke T 2021 Nat. Commun. 12 6657
Google Scholar
[86] Hu W H, Liu Y, Luo S Z, Li X, Yu J Q, Li X K, Sun Z G, Yuan K J, Bandrauk A D, Ding D J 2019 Phys. Rev. A 99 011402
Google Scholar
[87] Liu Y, Hu W H, Luo S Z, Yuan K J, Sun Z G, Bandrauk A D, Ding D J 2019 Phys. Rev. A 100 023404
Google Scholar
[88] Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Inoue D, Hashizume D, Iwasa Y 2017 Nat. Commun. 8 14465
Google Scholar
[89] Naaman R, Waldeck D H 2015 Annu. Rev. Phys. Chem. 66 263
Google Scholar
计量
- 文章访问数: 1512
- PDF下载量: 61
- 被引次数: 0