搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强场多光子跃迁干涉方法探测原子分子电离时间延迟

卫孟昊 李兴 罗嗣佐 赫兰海 丁大军

引用本文:
Citation:

强场多光子跃迁干涉方法探测原子分子电离时间延迟

卫孟昊, 李兴, 罗嗣佐, 赫兰海, 丁大军

The ionization time-delay in atoms and molecules detected through strong-field multiphoton transition interferometry

Wei Menghao, Li Xing, Luo Sizuo, He Lanhai, Dajun Ding
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 阿秒电离动力学作为超快科学的重要研究方向,其关键实验方法与理论模型的突破对于揭示物质的超快演化过程具有重要的科学意义。强场多光子跃迁干涉方法是该领域的前沿技术之一,利用量子路径干涉原理实现对强场多光子电离动力学过程的阿秒时间分辨探测,已广泛应用于从原子到复杂分子体系中量子态分辨的阿秒级电离延迟测量与表征,为强场物理研究提供了全新的时间分辨视角。本文围绕强场多光子跃迁干涉方法在原子与分子强场多光子电离时间延迟探测中的应用展开,系统阐述该方法的量子干涉机制,总结近年来原子分子阈上电离动力学及共振量子态间阿秒级时间延迟研究方面的最新进展,并展望了该技术在未来可能的应用前景与面临的挑战。
    Attosecond ionization dynamics, as a key research direction in ultrafast science, relies critically on breakthroughs in both experimental techniques and theoretical models to reveal the fundamental processes underlying ultrafast matter evolution. Among the cutting-edge approaches in this field, the strong-field multiphoton transition interferometry (SFMPTI) method stands out for its ability to achieve attosecond time-resolved probing of multiphoton ionization dynamics via quantum path interference. This technique has been widely applied to attosecond-scale measurements and characterizations of ionization time delays with quantum state resolution, ranging from atomic systems to complex molecules, offering a novel time-resolved perspective for strong-field physics.This article focuses on the application of the SFMPTI method in probing strong-field multiphoton ionization time delays in atoms and molecules. We systematically present the quantum interference mechanisms underlying the method, summarize recent progress in attosecond-resolved studies of above-threshold ionization dynamics and resonance-state-mediated delays, and discuss the prospective applications and challenges that lie ahead for this emerging technique.
  • [1]

    Maiman T 1960 Phys. Rev. Lett. 4 564

    [2]

    Pilipovich V, Morgun Y F 1965 J. Appl. Spectrosc. 3 67

    [3]

    DeMaria A, Stetser D, Heynau H 1966 Appl. Phys. Lett. 8 174

    [4]

    Shank C, Ippen E 1974 Appl. Phys. Lett. 24 373

    [5]

    Maine P, Strickland D, Bado P, Pessot M, Mourou G 1988 IEEE J. Quantum Electron. 24 398

    [6]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [7]

    Zewail A H 1990 Sci. Am. 263 76

    [8]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [9]

    Zewail A H, Bernstein R B 1988 Chem. Eng. News. 66 24

    [10]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42

    [11]

    Herschbach D R 1987 Angew. Chem. Int. Ed. 26 1221

    [12]

    Lee Y T 1987 Science 236 793

    [13]

    Zare R N, Bernstein R B 1980 Phys. Today 33 43

    [14]

    Ueda K, Eland J H 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S839

    [15]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445

    [16]

    Arasaki Y, Takatsuka K, Wang K, McKoy V 2010 J. Chem. Phys. 132

    [17]

    Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V 2011 Science 334 208

    [18]

    Ditmire T, Donnelly T, Falcone R, Perry M 1995 Phys. Rev. Lett. 75 3122

    [19]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138

    [20]

    Paul P-M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [21]

    Golde D, Meier T, Koch S W 2008 Phys. Rev. B Condens. Matter Mater. Phys.77 075330

    [22]

    Ferray M, L'Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31

    [23]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595

    [24]

    Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nat. Phys. 7 428

    [25]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565

    [26]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76

    [27]

    Li X, Liu X, Wang C, Ben S, Zhou S, Yang Y, Song X, Chen J, Yang W, Ding D 2024 Light Sci. Appl. 13 250

    [28]

    Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L, Prendergast D, Yabana K 2014 Science 346 1348

    [29]

    Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S 2007 Nature 449 1029

    [30]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S 2013 Nature 493 75

    [31]

    Sommer A, Bothschafter E, Sato S, Jakubeit C, Latka T, Razskazovskaya O, Fattahi H, Jobst M, Schweinberger W, Shirvanyan V 2016 Nature 534 86

    [32]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [33]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [34]

    Jiménez-Galán Á, Argenti L, Martín F 2014 Phys. Rev. Lett. 113 263001

    [35]

    Aseyev S, Ni Y, Frasinski L, Muller H, Vrakking M 2003 Phys. Rev. Lett. 91 223902

    [36]

    Mairesse Y, De Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B 2003 Science 302 1540

    [37]

    Klünder K, Dahlström J, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002

    [38]

    Dahlström J M, Guénot D, Klünder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taïeb R 2013 Chem. Phys. 414 53

    [39]

    Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C, Squibb R, Feifel R 2020 Sci. Adv. 6 eaba7762

    [40]

    Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060

    [41]

    Einstein A 1905Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (Albert Einstein-Gesellschaft)

    [42]

    Eisenbud L 1948The formal properties of nuclear collisions (Princeton University)

    [43]

    Wigner E P 1955 Phys. Rev. 98 145

    [44]

    Smith F T 1960 Phys. Rev. 118 349

    [45]

    Zipp L J, Natan A, Bucksbaum P H 2014 Optica 1 361

    [46]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C-C, Ding D 2023 Phys. Rev. A 108 023114

    [47]

    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S 2017 Science 358 1288

    [48]

    Li X, Gao X, Li W, Yang T, Zhang D, He L, Luo S, Zhao S-F, Ding D 2024 Phys. Rev. A 109 013103

    [49]

    Han M, Liang H, Ge P, Fang Y, Guo Z, Yu X, Deng Y, Peng L-Y, Gong Q, Liu Y 2020 Phys. Rev. A 102 061101

    [50]

    Song X, Shi G, Zhang G, Xu J, Lin C, Chen J, Yang W 2018 Phys. Rev. Lett. 121 103201

    [51]

    Johnson P M 1980 Acc. Chem. Res. 13 20

    [52]

    Bebb H B, Gold A 1966 Phys. Rev. 143 1

    [53]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [54]

    Swoboda M, Dahlström J, Ruchon T, Johnsson P, Mauritsson J, L’Huillier A, Schafer K 2009 Laser. Phys. 19 1591

    [55]

    Song X, Xu J, Lin C, Sheng Z, Liu P, Yu X, Zhang H, Yang W, Hu S, Chen J 2017 Phys. Rev. A 95 033426

    [56]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J, Smolkowska A, Logman P, Lepine F, Cauchy C, Zamith S, Marchenko T 2011 Science 331 61

    [57]

    Ge P, Han M, Liu M-M, Gong Q, Liu Y 2018 Phys. Rev. A 98 013409

    [58]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y 2017 Phys. Rev. Lett. 118 143203

    [59]

    Saloman E B 2010 J. Phys. Chem. Ref. Data. 39

    [60]

    Freeman R, Bucksbaum P, Milchberg H, Darack S, Schumacher D, Geusic M 1987 Phys. Rev. Lett. 59 1092

    [61]

    Su J, Ni H, Jaroń-Becker A, Becker A 2014 Phys. Rev. Lett. 113 263002

    [62]

    Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101

    [63]

    Kheifets A S 2021 Phys. Rev. A 104 L021103

    [64]

    Yu X, Wang N, Lei J-T, Shao J-X, Morishita T, Zhao S-F, Najjari B, Ma X-W, Zhang S-F 2022 Phys. Rev. A 106 023114

    [65]

    Maharjan C, Alnaser A, Litvinyuk I, Ranitovic P, Cocke C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1955

    [66]

    Bertolino M, Dahlström J M 2021 Phys. Rev. Res. 3 013270

    [67]

    Isinger M, Squibb R, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C, Miranda M, Dahlström J M 2017 Science 358 893

    [68]

    López S D, Donsa S, Nagele S, Arbó D, Burgdörfer J 2021 Phys. Rev. A 104 043113

    [69]

    Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 183001

    [70]

    Bharti D, Atri-Schuller D, Menning G, Hamilton K R, Moshammer R, Pfeifer T, Douguet N, Bartschat K, Harth A 2021 Phys. Rev. A 103 022834

    [71]

    Borràs V J, González-Vázquez J, Argenti L, Martín F 2023 Sci. Adv. 9 eade3855

    [72]

    Patchkovskii S, Benda J, Ertel D, Busto D 2023 Phys. Rev. A 107 043105

    [73]

    Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201

    [74]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119

    [75]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733

    [76]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326

    [77]

    Holzmeier F, Joseph J, Houver J-C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343

    [78]

    Piancastelli M 1999 J. Electron. Spectrosc. Relat. Phenom. 100 167

    [79]

    Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001

    [80]

    Kamalov A, Wang A L, Bucksbaum P H, Haxton D J, Cryan J P 2020 Phys. Rev. A 102 023118

    [81]

    Guo Z, Ge P, Fang Y, Dou Y, Yu X, Wang J, Gong Q, Liu Y 2022 Ultrafast Sci.

    [82]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R 2021 Nat. Commun. 12 1697

    [83]

    Wallace S, Dill D, Dehmer J L 1982 J. Chem. Phys. 76

    [84]

    Wang B, Liu B, Wang Y, Wang L 2010 Phys. Rev. A: At. Mol. Opt. Phys. 81 043421

    [85]

    Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S 2022 Front. Phys. 10 964586

    [86]

    Rist J, Klyssek K, Novikovskiy N M, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A 2021 Nat. Commun. 12 6657

    [87]

    Hu W, Liu Y, Luo S, Li X, Yu J, Li X, Sun Z, Yuan K-J, Bandrauk A D, Ding D 2019 Phys. Rev. A 99 011402

    [88]

    Liu Y, Hu W, Luo S, Yuan K-J, Sun Z, Bandrauk A D, Ding D 2019 Phys. Rev. A 100 023404

    [89]

    Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Inoue D, Hashizume D, Iwasa Y 2017 Nat. Commun. 8 14465

    [90]

    Naaman R, Waldeck D H 2015 Annu. Rev. Phys. Chem. 66 263

  • [1] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱:揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [2] 王慧勇, 李铭轩, 罗嗣佐, 丁大军. 高能量分辨光电子干涉仪研究进展. 物理学报, doi: 10.7498/aps.74.20250534
    [3] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, doi: 10.7498/aps.73.20240646
    [4] 王景哲, 董福龙, 刘杰. 时间延迟双色飞秒激光中$\text{H}_2^+$的解离动力学研究. 物理学报, doi: 10.7498/aps.73.20241283
    [5] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用. 物理学报, doi: 10.7498/aps.71.20221296
    [6] 徐一丹, 姜雯昱, 童继红, 韩露露, 左子潭, 许理明, 宫晓春, 吴健. NO分子形状共振阿秒动力学精密测量. 物理学报, doi: 10.7498/aps.71.20221735
    [7] 罗晓飞, 王波, 彭宽, 肖嘉莹. 基于聚焦声场模型的光声层析成像时间延迟快速校正反投影方法. 物理学报, doi: 10.7498/aps.71.20212019
    [8] 赵新军, 李九智, 蒋中英. 时间延迟对细胞周期动力学的影响. 物理学报, doi: 10.7498/aps.70.20210323
    [9] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, doi: 10.7498/aps.68.20181811
    [10] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, doi: 10.7498/aps.67.20181468
    [11] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, doi: 10.7498/aps.67.20181334
    [12] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, doi: 10.7498/aps.65.053302
    [13] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为. 物理学报, doi: 10.7498/aps.64.163601
    [14] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, doi: 10.7498/aps.63.047901
    [15] 杨林静. Logistic系统跃迁率的时间延迟效应. 物理学报, doi: 10.7498/aps.60.050502
    [16] 林灵, 闫勇, 梅冬成. 时间延迟增强双稳系统的共振抑制. 物理学报, doi: 10.7498/aps.59.2240
    [17] 曹 宁, 龙拥兵, 张治国, 高丽娟, 袁 洁, 赵伯儒, 赵士平, 杨乾生, 赵继民, 傅盘铭. 电子型掺杂高温超导体La2-xCexCuO4飞秒时间分辨动力学研究. 物理学报, doi: 10.7498/aps.57.2543
    [18] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, doi: 10.7498/aps.54.3200
    [19] 黄显高, 徐健学, 黄伟, 朱甫臣. 混沌系统的时间延迟同步误差分析. 物理学报, doi: 10.7498/aps.50.2296
    [20] 朱荣, 韩景诚, 关一夫, 刘厚祥, 李书涛, 吴存恺. 乙醛紫外多光子电离动力学研究. 物理学报, doi: 10.7498/aps.36.459
计量
  • 文章访问数:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-18

/

返回文章
返回