搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅氧烷环氧树脂交联网络结构演变及其高温电学性能

阴凯 李静 滕陈源 胡怡霜 陈向荣 查俊伟

引用本文:
Citation:

硅氧烷环氧树脂交联网络结构演变及其高温电学性能

阴凯, 李静, 滕陈源, 胡怡霜, 陈向荣, 查俊伟

Structural evolution of siloxane-epoxy crosslinked networks and their high-temperature electrical properties

YIN Kai, LI Jing, TENG Chenyuan, HU Yishuang, CHEN Xiangrong, ZHA Junwei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 电子器件向着大功率、小型化方向发展对环氧树脂电子封装材料的高温电学性能提出了更高的要求. 本研究采用环氧基封端苯基三硅氧烷(ETS)作为功能单体, 通过交联反应将Si—O键引入到双酚A环氧树脂中, 系统研究了ETS对环氧树脂复合材料的结构以及高温电学特性的影响及调控作用. 实验结果表明, 随着ETS含量的增大, 环氧树脂复合材料的交联度逐渐降低. 当ETS添加质量分数为2.5%时, 复合材料的玻璃化转变温度及热稳定性得到了提升, 且呈现最优综合电学性能, 在70 ℃下, 该复合材料电导率大幅下降, 空间电荷积聚程度得到明显改善, 陷阱深度加深, 介电损耗降低, 击穿强度提升至74.2 kV/mm. 随着ETS含量的逐步增大, 环氧复合材料的电学性能呈现先增强后减弱的非线性变化规律, 这种浓度依赖性行为与纳米填料改性体系具有相似的特性演变特征. 本文提出通过对硅氧烷交联后与环氧构成的微观交联网络拓扑结构演变来解释ETS对环氧树脂高温电学性能的影响. 本研究为开发硅氧烷改性高性能环氧树脂电子封装材料提供了重要的理论依据以及设计策略.
    The ongoing trend toward high-power and miniaturized electronic devices has raised increasingly stringent requirements for the high-temperature electrical properties of epoxy encapsulating materials. In this study, epoxy-terminated phenyltrisiloxane (ETS) is used as a functional monomer to incorporate Si-O bonds into bisphenol-A epoxy resin through crosslinking reactions, thereby systematically investigating the influence and modulation effects of ETS on the structure and high-temperature electrical characteristics of epoxy composites. Gel content measurements indicate that as the concentration of ETS increases, the gel content of the epoxy resin composite decreases accordingly, suggesting that higher ETS content reduces the crosslinking density of the epoxy network. Experimental test results demonstrate that compared with pure epoxy resin, the composite with 2.5% ETS exhibits superior performance: the glass transition temperature increases to 129 ℃ with thermal decomposition temperature rising, while showing optimal high-temperature (70 ℃) electrical properties including significantly reduced conductivity, markedly suppressed space charge accumulation, deepened trap energy level (from 0.834 eV to 0.847 eV), reduced dielectric loss (0.005 at 50 Hz), and improved breakdown strength (74.2 kV/mm). Notably, as the ETS content increases, the electrical properties of epoxy composite follow a non-monotonic concentration dependence, initially enhancing then deteriorating, exhibiting evolutionary characteristics similar to those of nanoparticle-modified systems. Herein, a competitive mechanism between the epoxy network structure and intrinsic properties of ETS is proposed to explain this phenomenon: at low concentrations, the original C—C network dominates, where the intrinsic properties of ETS are constrained by the host matrix, leading to improved thermal stability. Simultaneously, the bandgap difference between ETS and DGEBA establishes charge barriers that can enhance insulation performance. However, at higher concentrations, the reduced crosslinking density and increased free volume caused by reactivity and structural mismatch between ETS and DGEBA ultimately lead to performance degradation. This study offers crucial theoretical insights into and produces the design strategies for developing high-performance siloxane-modified epoxy encapsulants.
  • 图 1  ETS单体的化学分子式

    Fig. 1.  Molecular structure of ETS monomer.

    图 2  环氧树脂单体的分子轨道能级分布 (a) DGEBA; (b) ETS

    Fig. 2.  Energy level distribution of epoxy monomers: (a) DGEBA; (b) ETS.

    图 3  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP复合材料的凝胶含量

    Fig. 3.  The gel content of Pure EP, 2.5% Si-EP, 5% Si-EP, and 10% Si-EP composites.

    图 4  (a)—(d) Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的SEM照片; (e), (f) 2.5% Si-EP表面C, O, Si元素分布及含量; (g), (h) 10% Si-EP表面C, O, Si元素分布及含量

    Fig. 4.  (a)–(d) SEM of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples; (e), (f) distribution of C, O and Si elements and content on the surface of 2.5% Si-EP; (g), (h) distribution of C, O and Si elements and content on the surface of 10% Si-EP.

    图 5  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的XPS图谱以及Si-EP对应的Si 2p的放大图谱

    Fig. 5.  XPS spectra of Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP samples, with insets showing enlarged Si 2p spectra for the Si-EP samples.

    图 6  Pure EP, 2.5% Si-EP, 5% Si-EP 和10% Si-EP的FTIR图谱

    Fig. 6.  FTIR spectra of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 7  Pure EP, 2.5% Si-EP, 5% Si-EP 和10% Si-EP的DSC曲线

    Fig. 7.  DSC curves of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 8  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的热失重曲线

    Fig. 8.  TGA curves of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 9  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP在不同场强下的电导率

    Fig. 9.  Conductivity of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples at different applied electric fields.

    图 10  (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP和(d) 10% Si-EP在不同场强下空间电荷分布随时间的变化

    Fig. 10.  Space charge distribution of (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP and (d) 10% Si-EP samples at different applied electric fields.

    图 11  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP平均电荷密度随时间的衰减

    Fig. 11.  Decay of average charge density with time for Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 12  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的陷阱能级

    Fig. 12.  Trap energy levels of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 13  Pure EP, 2.5% Si-EP, 5% Si-EP 和10% Si-EP的宽频介电常数实部ε'

    Fig. 13.  Broadband dielectric spectroscopy real part ε' of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 14  (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP和(d) 10% Si-EP的宽频介电虚部ε''弛豫响应分解

    Fig. 14.  Broadband dielectric spectroscopy imaginary part ε'' of (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP and (d) 10% Si-EP samples.

    图 15  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP交流击穿场强的韦布尔分布

    Fig. 15.  Weibull distribution of AC breakdown field strength for Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 16  Pure EP, 5% Si-EP, 5% Si-EP, 10% Si-EP 环氧树脂交联网络随着ETS含量增大的演变示意图

    Fig. 16.  Schematic diagram of the evolution of Pure EP, 2.5% Si-EP, 5% Si-EP, and 10% Si-EP cross-linked network with increasing ETS content.

    表 1  Pure EP, Si-EP韦布尔概率分布参数

    Table 1.  Weibull distribution parameters for Pure EP and Si-EP samples.

    Pure EP 2.5% Si-EP 5% Si-EP 10% Si-EP
    β 68.3 74.2 72.6 67.2
    σ 14.5 16.1 11.1 12.5
    下载: 导出CSV
  • [1]

    任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利 2024 物理学报 73 027703Google Scholar

    Ren J W, Jiang G Q, Chen Z J, Wei H C, Zhao L H, Jia S L 2024 Acta Phys. Sin. 73 027703Google Scholar

    [2]

    Geng H R, Zhao L, Deng J, Chen J R, Fan Y H, Zhao Q Y, Gui H X, Liao J H, Zhao Y F, Qian Y X, Wang G Z 2025 Compos. Sci. Technol. 261 110993Google Scholar

    [3]

    You Z Y, Weng L, Guan L Z, Zhang X R, Wu Z J, Chen H, Zhao W 2025 High Volt. 10 219Google Scholar

    [4]

    Jiang C W, Hao C X, Zi C F, Li J, Liu W J, Bian Y M, Sun F Y, Xu Y Q, Yan Y X, Wang L Y, Su F Y, Tian Y Q 2025 Compos. Sci. Technol. 265 111135Google Scholar

    [5]

    Xia G W, Xie J, Song Y Z, Duan Q J, Zhong Y Y, Xie Q 2025 Compos. Sci. Technol. 261 111019Google Scholar

    [6]

    Yang X, Huang W J, Dong H, Zha J W 2025 Adv. Mater. 37 2500472Google Scholar

    [7]

    Maes S, Badi N, Winne J M, Du Prez F E 2025 Nat. Rev. Chem. 9 144Google Scholar

    [8]

    Yang K R, Dai J Y, Zhao W W, Wang S P, Liu X Q 2024 Compos. part B: Eng. 284 111728Google Scholar

    [9]

    Zhou Y, LaChance A M, Wang Q, Gao Y F, Zhou J R, Huang B D, Shen K Y, Hou Z L, Lei T, Wang N Z, Zuo Z, Liu S, Dissado L A, Shao T, Liang X D, Cao Y, Sun L Y, Wu C, 2025 J. Mater. Chem. A 13 12926Google Scholar

    [10]

    Wang Z Y, Sun X, Wang Y, Liu J D, Zhang C, Zhao Z B, Du X Y 2023 Ceram. Int. 49 2871Google Scholar

    [11]

    黄家良, 高筱然, 郭亮, 宋思宇, 朱杰, 方志 2025 高电压技术 51 2476

    Huang J L, Gao X R, Guo L, Song S Y, Zhu J, Fang Z 2025 High Volt. Eng. 51 2476

    [12]

    邱甲云, 安秋凤, 史书源, 卢攀 2023 绝缘材料 56 1

    Qiu J Y, An Q F, Shi S Y, Lu P 2023 Insul. Mater. 56 1

    [13]

    Liu Y P, Li L, Liu H C, Zhang M J, Liu A J, Liu L, Tang L, Wang G L, Zhou S S 2020 Compos. Sci. Technol. 200 108418Google Scholar

    [14]

    贺涛, 刘文凤, 冀运东 2024 热固性树脂 39 1Google Scholar

    He T, Liu W F, Ji Y D 2024 Thermoset. Resin 39 1Google Scholar

    [15]

    Jin B H, Jang J, Kang D J, Yoon S, Im H G 2022 Compos. Sci. Technol. 224 109456Google Scholar

    [16]

    Wang C Z, Li S X, Yuan Y, Ji Y D, Cao D F 2024 Polymer 308 127368Google Scholar

    [17]

    Zhang Y, Shi Y X, Jin C, Wu C, Dong H, Qu Z R, Song Y J 2025 React. Funct. Polym. 207 106114Google Scholar

    [18]

    Singha S, Thomas M 2008 IEEE Trans. Dielect. Electr. Insul. 15 12Google Scholar

    [19]

    Ma Y N, Zhao Z H, Zheng Z R, Li J W, Li M H, Hu J 2024 Matter 7 4046Google Scholar

    [20]

    Gibbs G V, Wallace A F, Cox D F, Downs R T, Ross N L, Rosso K M 2009 Am. Mineral. 94 1085Google Scholar

    [21]

    Rüchardt C, Beckhaus H 1980 Angew. Chem. Int. Ed. Engl. 19 429Google Scholar

    [22]

    Sun B Z, Liang H L, Che D Y, Liu H P, Guo S 2019 RSC Adv. 9 9099Google Scholar

    [23]

    Liu Z Y, Wang H, Chen Y Z, Kang G D, Hua L, Feng J D 2022 Polymers 14 512Google Scholar

    [24]

    Yu M, Chen Z Y, Li J, Tan J H, Zhu X B 2023 Molecules 28 2826Google Scholar

    [25]

    Weinhold F, West R 2011 Organometallics 30 5815Google Scholar

    [26]

    Armstrong D A, Yu D, Rauk A 1996 Can. J. Chem. 74 1192Google Scholar

    [27]

    Smith K L, Black K M 1984 J. Vac. Sci. Technol. A 2 744Google Scholar

    [28]

    Berthomieu C, Hienerwadel R 2009 Photosynth. Res. 101 157Google Scholar

    [29]

    Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W, Breton J 1990 Biochim. Biophys. Acta–Bioenerg. 1016 49Google Scholar

    [30]

    Yin K, Fan Q H, Li J, Rahman T U, Zhang T Y, Paramane A, Chen X R 2024 High Volt. 9 930Google Scholar

    [31]

    Kim M T 1997 Thin Solid Films 311 157Google Scholar

    [32]

    Oh T 2010 Phys. Status Solidi C 7 448Google Scholar

    [33]

    Cao G, Yan Y, Zou X M, Zhu R S, Ouyang F Y 2018 Spectral Anal. Rev. 06 12Google Scholar

    [34]

    Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A 2009 Langmuir 25 7342Google Scholar

    [35]

    Dai X Z, Rumi A, Cavallini A, Bak C L, Hao J, Liao R J, Wang H 2024 IEEE Trans. Dielect. Electr. Insul. 31 2290Google Scholar

    [36]

    Zhu Y W, Jiang Y H, Cao F H, Wang P J, Ke J X, Liu J, Nie Y J, Li G C, Wei Y H, Lu G H, Li S T 2025 J. Mater. Chem. C 13 11697Google Scholar

    [37]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [38]

    Wang T Y, Mao J, Zhang B, Zhang G X, Dang Z M 2024 Nat. Rev. Electr. Eng. 1 516Google Scholar

    [39]

    Wu C, Liang X D, Dissado L A, Chalashkanov N M, Dodd S J, Gao Y F, Xu S 2018 Compos. Sci. Technol. 163 56Google Scholar

    [40]

    Fu J Y 2014 Philos. Mag. 94 1788Google Scholar

    [41]

    Wu K N, Sui H R, Ren Y R, Yang K, Zhao P, Ouyang B H, Li H, Zhang X, Ran L, Li J Y 2025 IEEE Trans. Dielect. Electr. Insul. 32 815Google Scholar

    [42]

    Wang Q L, Chen X R, Li J Y, Paramane A, Huang X F, Ren N 2024 IEEE Trans. Dielect. Electr. Insul. 31 1823Google Scholar

    [43]

    高铭泽, 张沛红 2016 物理学报 65 247802Google Scholar

    Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802Google Scholar

    [44]

    Grabowsky S, Beckmann J, Luger P 2012 Aust. J. Chem. 65 785Google Scholar

    [45]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

  • [1] 王江琼, 李维康, 张文业, 万宝全, 查俊伟. 电缆绝缘材料交联聚乙烯的老化及寿命调控. 物理学报, doi: 10.7498/aps.73.20240201
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, doi: 10.7498/aps.73.20230708
    [3] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性. 物理学报, doi: 10.7498/aps.73.20240215
    [4] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.72.20222270
    [5] 李东阳, 张远宪, 欧永雄, 普小云. 聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光. 物理学报, doi: 10.7498/aps.68.20181696
    [6] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性. 物理学报, doi: 10.7498/aps.66.188201
    [7] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系. 物理学报, doi: 10.7498/aps.65.247802
    [8] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究. 物理学报, doi: 10.7498/aps.65.047701
    [9] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, doi: 10.7498/aps.65.077701
    [10] 李圣昆, 唐军, 毛宏庆, 王明焕, 陈国彬, 翟超, 张晓明, 石云波, 刘俊. Fe3O4纳米颗粒/聚二甲基硅氧烷复合材料磁电容效应的研究. 物理学报, doi: 10.7498/aps.63.057501
    [11] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, doi: 10.7498/aps.63.237306
    [12] 温昌礼, 季家镕, 窦文华, 冯向华, 徐蓉, 门涛, 刘长海. 制备多模聚硅氧烷光波导关键技术的改进. 物理学报, doi: 10.7498/aps.61.094202
    [13] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响. 物理学报, doi: 10.7498/aps.61.158201
    [14] 刘相, 谢凯, 郑春满, 王军. 不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究. 物理学报, doi: 10.7498/aps.60.118202
    [15] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响. 物理学报, doi: 10.7498/aps.60.106103
    [16] 周 丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3单晶/环氧树脂1-3型复合材料的压电性能研究. 物理学报, doi: 10.7498/aps.57.4552
    [17] 蒋 乐, 杨德仁, 余学功, 马向阳, 徐 进, 阙端麟. 直拉硅中氮在高温退火过程中对氧沉淀的影响. 物理学报, doi: 10.7498/aps.52.2000
    [18] 邱素娟, 陈开茅, 武兰青. 注硅半绝缘GaAs的深能级. 物理学报, doi: 10.7498/aps.42.1304
    [19] 锰锌铁氧体单晶小组. 高温氧压单晶炉. 物理学报, doi: 10.7498/aps.25.178
    [20] 徐世秋, 韩季之. 环氧树脂在固化过程中的红外吸收光谱. 物理学报, doi: 10.7498/aps.16.81
计量
  • 文章访问数:  367
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-07-24
  • 上网日期:  2025-08-12

/

返回文章
返回