-
电子器件向着大功率、小型化方向发展对环氧树脂电子封装材料的高温电学性能提出了更高的要求. 本研究采用环氧基封端苯基三硅氧烷(ETS)作为功能单体,通过交联反应将Si-O键引入到双酚A环氧树脂中,系统地研究了ETS对环氧树脂复合材料的结构以及高温电学特性的影响及调控作用. 实验结果表明:随着ETS含量的增加,环氧树脂复合材料的交联度逐渐降低. 当ETS添加质量分数为2.5 %时,复合材料的玻璃化转变温度及热稳定性得到了提升,且呈现最优综合电学性能,在70℃下,该复合材料电导率大幅下降,空间电荷积聚程度得到明显改善,陷阱深度加深,介电损耗降低,击穿强度提升至74.2 kV/mm. 随着ETS含量的逐步增加,环氧复合材料的电学性能呈现先增强后减弱的非线性变化规律,这种浓度依赖性行为与纳米填料改性体系具有相似的特性演变特征.本文提出通过对硅氧烷交联后与环氧构成的微观交联网络拓扑结构演变来解释ETS对环氧树脂高温电学性能的影响. 本研究为开发硅氧烷改性高性能环氧树脂电子封装材料提供了重要的理论依据以及设计策略.The ongoing trend toward high-power and miniaturized electronic devices has imposed increasingly stringent requirements on the high-temperature electrical properties of epoxy encapsulating materials. In this study, epoxy-terminated phenyltrisiloxane (ETS) was employed as a functional monomer to incorporate Si-O bonds into bisphenol-A epoxy resin through crosslinking reactions, systematically investigating the influence and modulation effects of ETS on the structure and high-temperature electrical characteristics of epoxy composites. Gel content measurements indicate that as the concentration of ETS increases, the gel content of the epoxy resin composites decreases accordingly, suggesting that higher ETS content reduces the crosslinking density of the epoxy network. Experimental test results demonstrate that compared to pure epoxy resin, the composite with 2.5 wt% ETS exhibits superior performance: the glass transition temperature increases to 129℃ with enhanced thermal decomposition temperature, while showing optimal high-temperature (70℃) electrical properties - including significantly reduced conductivity, markedly suppressed space charge accumulation, deepened trap energy level (from 0.834 eV to 0.847 eV), decreased dielectric loss (0.005 at 50 Hz), and improved breakdown strength (74.2 kV/mm). Notably, the electrical properties of epoxy composites follow a non-monotonic concentration dependence with increasing ETS content, initially enhancing then deteriorating, exhibiting similar evolutionary characteristics to nanoparticle-modified systems. We propose a competitive mechanism between the epoxy network structure and intrinsic properties of ETS to explain this phenomenon: At low concentrations, the original C-C network dominates, where the intrinsic properties of ETS are constrained by the host matrix, leading to improved thermal stability. Simultaneously, the bandgap difference between ETS and DGEBA establishes charge barriers that enhance insulation performance. However, at higher concentrations, the reduced crosslinking density and increased free volume caused by reactivity and structural mismatch between ETS and DGEBA ultimately lead to performance degradation. This study provides crucial theoretical insights and design strategies for developing high-performance siloxane-modified epoxy encapsulants.
-
Keywords:
- Epoxy resin /
- Siloxane /
- Crosslinked network /
- High-temperature insulation
-
[1] Ren J W, Jiang G Q, Chen Z J, Wei H C, Zhao L H, Jia S L, College of Electrical Engineering, Sichuan University, Chengdu 610065, China 2024 Acta Phys. Sin. 73 027703 (in Chinese) [任俊文,姜国庆,陈志杰,魏华超,赵莉华,贾申利 2024 物理学报 73 027703]
[2] Geng H, Zhao L, Deng J, Chen J, Fan Y, Zhao Q, Gui H, Liao J, Zhao Y, Qian Y, Wang G 2025 Compos. Sci. Technol. 261 110993
[3] You Z, Weng L, Guan L, Zhang X, Wu Z, Chen H, Zhao W 2025 High Volt. 10 219
[4] Jiang C, Hao C, Zi C, Li J, Liu W, Bian Y, Sun F, Xu Y, Yan Y, Wang L, Su F, Tian Y 2025 Compos. Sci. Technol. 265 111135
[5] Xia G, Xie J, Song Y, Duan Q, Zhong Y, Xie Q 2025 Compos. Sci. Technol. 261 111019
[6] Yang X, Huang W, Dong H, Zha J 2025 Adv. Mater. 37 2500472
[7] Maes S, Badi N, Winne J M, Du Prez F E 2025 Nat. Rev. Chem. 9 144
[8] Yang K, Dai J, Zhao W, Wang S, Liu X 2024 Compos. part B: Eng. 284 111728
[9] Zhang Z, Zhou Y, Yang Y, Ma X, Xuan L, Wu X 2023 Compos. Sci. Technol. 231 109825
[10] Wang Z Y, Sun X, Wang Y, Liu J D, Zhang C, Zhao Z B, Du X Y 2023 Ceram. Int. 49 2871
[11] Huang J, Gao X, Guo L, Song S, Zhu J, Fang Z 2025 High Volt. Eng. 51 2476 (in Chinese) [黄家良,高筱然,郭亮,宋思宇,朱杰,方志 2025 高电压技术 51 2476]
[12] Qiu J, An Q, Shi S, Lu P 2023 Insul. Mater. 56 1 (in Chinese) [邱甲云,安秋凤,史书源,卢攀 2023 绝缘材料 56 1]
[13] Liu Y, Li L, Liu H, Zhang M, Liu A, Liu L, Tang L, Wang G, Zhou S 2020 Compos. Sci. Technol. 200 108418
[14] He T, Liu W, Ji Y 2024 Thermoset. Resin 39 1 (in Chinese) [贺涛,刘文凤,冀运东 2024 热固性树脂 39 1]
[15] Jin B H, Jang J, Kang D J, Yoon S, Im H G 2022 Compos. Sci. Technol. 224 109456
[16] Wang C, Li S, Yuan Y, Ji Y, Cao D 2024 Polymer 308 127368
[17] Zhang Y, Shi Y, Jin C, Wu C, Dong H, Qu Z, Song Y 2025 React. Funct. Polym. 207 106114
[18] Singha S, Thomas M 2008 IEEE Trans. Dielect. Electr. Insul. 15 12
[19] Ma Y, Zhao Z, Zheng Z, Li J, Li M H, Hu J 2024 Matter 7 p4046
[20] Gibbs G V, Wallace A F, Cox D F, Downs R T, Ross N L, Rosso K M 2009 Am. Mineral. 94 1085
[21] Rüchardt C, Beckhaus H 1980 Angew. Chem. Int. Ed. Engl. 19 429
[22] Sun B, Liang H, Che D, Liu H, Guo S 2019 RSC Adv. 9 9099
[23] Liu Z, Wang H, Chen Y, Kang G, Hua L, Feng J 2022 Polymers 14 512
[24] Yu M, Chen Z, Li J, Tan J, Zhu X 2023 Molecules 28 2826
[25] Weinhold F, West R 2011 Organometallics 30 5815
[26] Armstrong D A, Yu D, Rauk A 1996 Can. J. Chem. 74 1192
[27] Smith K L, Black K M 1984 J. Vac. Sci. Technol. A 2 744
[28] Berthomieu C, Hienerwadel R 2009 Photosynth. Res. 101 157
[29] Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W, Breton J 1990 Biochim. Biophys. Acta-Bioenerg. 1016 49
[30] Yin K, Fan Q, Li J, Rahman T U, Zhang T, Paramane A, Chen X 2024 High Volt. 9 930
[31] Kim M T 1997 Thin Solid Films 311 157
[32] Oh T 2010 Phys. Status Solidi C 7 448
[33] Cao G, Yan Y, Zou X, Zhu R, Ouyang F 2018 Spectral Anal. Rev. 06 12
[34] Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A 2009 Langmuir 25 7342
[35] Dai X, Rumi A, Cavallini A, Bak C L, Hao J, Liao R, Wang H 2024 IEEE Trans. Dielect. Electr. Insul. 31 2290
[36] Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706
[37] Wang T Y, Mao J, Zhang B, Zhang G X, Dang Z M 2024 Nat. Rev. Electr. Eng. 1 516
[38] Lin Y, Liu Y, Cao B, Xue J, Wang L, Wang J, Ding L 2023 High Volt. 8 283
[39] Fu J Y 2014 Philos. Mag. 94 1788
[40] Wang Q, Chen X, Li J, Paramane A, Huang X, Ren N 2024 IEEE Trans. Dielect. Electr. Insul. 31 1823
[41] Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802 (in Chinese) [高铭泽,张沛红 2016 物理学报 65 247802]
[42] Grabowsky S, Beckmann J, Luger P 2012 Aust. J. Chem. 65 785
[43] Chen J, Zhou Y, Huang X, Yu C, Han D, Wang A, Zhu Y, Shi K, Kang Q, Li P, Jiang P, Qian X, Bao H, Li S, Wu G, Zhu X, Wang Q 2023 Nature 615 62
计量
- 文章访问数: 62
- PDF下载量: 2
- 被引次数: 0