搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

种子注入螺旋手性控制的调Q涡旋固体激光器特性研究

连天虹 纪馨雅 邢俊红 刘芸 焦明星

引用本文:
Citation:

种子注入螺旋手性控制的调Q涡旋固体激光器特性研究

连天虹, 纪馨雅, 邢俊红, 刘芸, 焦明星

Study on Characteristics of Q-switched Vortex Solid-state Laser with Spiral Chirality Controlled by Injection Seeding

Lian Tian-Hong, Ji Xin-ya, Xing Jun-hong, Liu Yun, Jiao Ming-Xing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 对固体激光器进行模式控制可以产生涡旋光通信、目标探测等需要的高质量涡旋光.在调Q脉冲运行状态下,同一角向阶次相反螺旋手性光场的选择成为调Q涡旋固体激光器目前面临的一个主要技术瓶颈.提出将小功率种子涡旋光注入到谐振腔中进行脉冲激光手性选择,建立了种子注入下多光场速率方程模型,研究了阈值注入信噪比、单脉冲能量、径向模谱等特性.结果表明:阈值注入信噪比随模式角向阶次升高而上升,抽运功率、输出镜反射率和谐振腔长度增大均使阈值注入信噪比升高.注入状态下单脉冲能量与自由运转状态下单脉冲能量的比值随角向阶次的升高有所下降,增加抽运功率、减小输出镜反射率、减小谐振腔长度可使该值升高.适当的激光器参数下,谐振腔对种子光的径向模谱具有一定的净化作用.本文的手性控制方案及研究结果可为涡旋光激光器的研究提供参考.
    Optical vortex beam has wide application prospect in areas such as optical communication, lidar detection and optical trapping. To increase the operating distance, a high-power vortex laser source is necessary in these applications. Control of the spiral chirality of the Laguerre-Gaussian (LG) mode has become a key problem in Q-switched pulsed solid-state vortex lasers. We put forward the injection seeding method to control the spiral chirality of the LG mode in Q-switched laser cavity. The schematic of the method is shown in Fig. (a), a small power continuous wave vortex beam with determined chirality is injected into the laser cavity, with the gain medium pumped by a ring-shaped beam. The optical field has the same spiral chirality with the injected beam will surpass the optical field has the opposite spiral chirality and the chirality purity increases as the injected power increasing. The threshold injected signal-to-noise ratio increases with the angular order of the LG mode, this is due to the decreasing of the overlapping of the standing wave pattern of the opposite chirality beam. The threshold injected signal-to-noise ratio also increases with the pumping power and the reflectivity of the output mirror. The ratio of the pulse energy under injection to the pulse energy under free running decreases with the rising angular order. This ratio increases with the rising pumping power and decreases with the increasing reflectivity of the output mirror. The seeding beam, which is generated by spiral phase modulation on the fundamental mode beam, always has a wide radial spectrum. The radial spectrum of the beam generated by second order spiral phase modulation on the fundamental mode beam is shown in Fig. (b). Under proper ring width of the pumping beam, this radial spectrum can be purified in the Q-switched laser cavity, as is shown in Fig. (c). Therefore, the spiral phase modulated beam can be used as the seeding source to generate high-purity vortex pulse.
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Physical Review A 45 8185

    [2]

    Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Science & Applications 14 4

    [3]

    Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Advanced Photonics 3 034001

    [4]

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204 (in Chinese) [王亚东,甘雪涛,俱沛,庞燕,袁林光,赵建林 2015 物理学报 64 034204

    [5]

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想,张远颖 2015 物理学报 64 164210]

    [6]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Science & Applications 8 90

    [7]

    Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008

    [8]

    Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201 (in Chinese) [赵婷,宫毛毛,张松斌 2024 物理学报 73 244201]

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488

    [10]

    Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002

    [11]

    Wen Y, Pan Z Q 2023 Journal of Lightwave Technology 41 2007

    [12]

    Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040 (in Chinese) [杨苏辉,廖英琦,林学彤,刘欣宇,齐若伊,郝燕 2021 红外与激光工程 50 20211040]

    [13]

    Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203 (in Chinese) [李若楠,薛晶晶,宋丹,李鑫,王丹,杨保东,周海涛 2025 物理学报 74 044203]

    [14]

    Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203 (in Chinese) [刘伟,贾青,郑坚 2024 物理学报 73 055203]

    [15]

    Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006 (in Chinese) [柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006]

    [16]

    Forbes A 2019 Laser Photonics Rev. 13 1900140

    [17]

    Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019

    [18]

    Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704

    [19]

    Kim D J, Kim J W 2017 Optics Communications 383 26

    [20]

    Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449

    [21]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903

    [22]

    Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics Journal 9 1500408

    [23]

    He H S, Chen Z, Li H B, Dong J 2018 Laser Physics 28 055802

    [24]

    Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49

  • [1] 秦雪云, 吴越, 朱榕琪, 朱竹青. 基于微米级全光磁全息结构的涡旋光生成实验研究. 物理学报, doi: 10.7498/aps.74.20250649
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, doi: 10.7498/aps.73.20241378
    [3] 王滔宁, 姜玲玲, 程庭清, 王礼, 江海河. 2.94 μm LiNbO3声光调Q Er:YAG激光输出脉冲特性. 物理学报, doi: 10.7498/aps.73.20231616
    [4] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, doi: 10.7498/aps.73.20240757
    [5] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, doi: 10.7498/aps.72.20231521
    [6] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, doi: 10.7498/aps.70.20201496
    [7] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, doi: 10.7498/aps.69.20200086
    [8] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, doi: 10.7498/aps.68.20190747
    [9] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, doi: 10.7498/aps.68.20190381
    [10] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, doi: 10.7498/aps.68.20190393
    [11] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, doi: 10.7498/aps.68.20182304
    [12] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, doi: 10.7498/aps.66.014205
    [13] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, doi: 10.7498/aps.63.224202
    [14] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, doi: 10.7498/aps.61.094217
    [15] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究. 物理学报, doi: 10.7498/aps.56.2663
    [16] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, doi: 10.7498/aps.56.5818
    [17] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究. 物理学报, doi: 10.7498/aps.53.1804
    [18] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究. 物理学报, doi: 10.7498/aps.52.355
    [19] 尚连聚. 端面抽运固体激光器的腔模匹配分析. 物理学报, doi: 10.7498/aps.52.1408
    [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, doi: 10.7498/aps.51.1517
计量
  • 文章访问数:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-17

/

返回文章
返回