搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

种子注入螺旋手性控制的调Q涡旋固体激光器特性

连天虹 纪馨雅 邢俊红 刘芸 焦明星

引用本文:
Citation:

种子注入螺旋手性控制的调Q涡旋固体激光器特性

连天虹, 纪馨雅, 邢俊红, 刘芸, 焦明星
cstr: 32037.14.aps.74.20250667

Characteristics of Q-switched vortex solid-state laser with spiral chirality controlled by injection seeding

LIAN Tianhong, JI Xinya, XING Junhong, LIU Yun, JIAO Mingxing
cstr: 32037.14.aps.74.20250667
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 对固体激光器进行模式控制可以产生涡旋光通信、目标探测等需要的高质量涡旋光. 在调Q脉冲运行状态下, 同一角向阶次相反螺旋手性光场的选择成为调Q涡旋固体激光器目前面临的一个主要技术瓶颈. 提出将小功率种子涡旋光注入谐振腔中进行脉冲激光手性选择, 建立了种子注入下多光场速率方程模型, 研究了阈值注入信噪比、单脉冲能量、径向模谱等特性. 结果表明: 阈值注入信噪比随模式角向阶次升高而上升, 抽运功率、输出镜反射率和谐振腔长度增大均使阈值注入信噪比升高. 注入状态下单脉冲能量与自由运转状态下单脉冲能量的比值随角向阶次的升高有所下降, 增加抽运功率、减小输出镜反射率、减小谐振腔长度可使该值升高. 适当的激光器参数下, 谐振腔对种子光的径向模谱具有一定的净化作用. 本文的手性控制方案及研究结果可为涡旋光激光器的研究提供参考.
    Optical vortex beam has wide application prospect in fields such as optical communication, lidar detection and optical trapping. To increase the operating distance, a high-power vortex laser source are required in these applications. Control of the spiral chirality of the Laguerre-Gaussian (LG) mode has become a key problem in Q-switched pulsed solid-state vortex lasers. In this work, we present an injection seeding method to control the spiral chirality of the LG mode in Q-switched laser cavity. The schematic of the method is shown in Fig. (a). A small power continuous wave vortex beam with determined chirality is injected into the laser cavity, with the gain medium pumped by a ring-shaped beam. The light field with the same spiral chirality as the injected beam will exceed the light field with the opposite spiral chirality, and the chirality purity will increase as the injected power increases. The threshold injected signal-to-noise ratio increases with the angular order of the LG mode increasing, this is due to the reduced overlap of the standing wave patterns of the opposite chiral beams. The signal-to-noise ratio of threshold injection also increases as the pumping power and the reflectivity of the output mirror increase. The ratio of the pulse energy under injection to the pulse energy under free running decreases with the angular order rising. This ratio increases with the pumping power rising, and decreases with the reflectivity of the output mirror increasing. The seeding beam generated by spiral phase modulation of the fundamental mode beam always has a wide radial spectrum. The radial spectrum of the beam generated by second order spiral phase modulation of the fundamental mode beam is shown in Fig. (b). Under an appropriate ring width of the pumping beam, this radial spectrum can be purified in the Q-switched laser cavity as shown in Fig. (c). Therefore, the spiral phase modulated beam can be used as a seeding source to generate high-purity vortex pulse.
      通信作者: 连天虹, tianhongl@126.com
    • 基金项目: 国家自然科学基金(批准号: 61805196, 51875455)资助的课题.
      Corresponding author: LIAN Tianhong, tianhongl@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805196, 51875455).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Sci. Appl. 14 4Google Scholar

    [3]

    Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Adv. Photonics 3 034001

    [4]

    王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204Google Scholar

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204Google Scholar

    [5]

    陈理想, 张远颖 2015 物理学报 64 164210Google Scholar

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210Google Scholar

    [6]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90Google Scholar

    [7]

    Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008

    [8]

    赵婷, 宫毛毛, 张松斌 2024 物理学报 73 244201Google Scholar

    Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201Google Scholar

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [10]

    Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002Google Scholar

    [11]

    Wen Y, Pan Z Q 2023 J. Lightwave Technol. 41 2007Google Scholar

    [12]

    杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕 2021 红外与激光工程 50 20211040Google Scholar

    Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040Google Scholar

    [13]

    李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203Google Scholar

    Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203Google Scholar

    [14]

    刘伟, 贾青, 郑坚 2024 物理学报 73 055203Google Scholar

    Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203Google Scholar

    [15]

    柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006Google Scholar

    Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006Google Scholar

    [16]

    Forbes A 2019 Laser Photonics Rev. 13 1900140Google Scholar

    [17]

    Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019

    [18]

    Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704Google Scholar

    [19]

    Kim D J, Kim J W 2017 Opt. Commun. 383 26Google Scholar

    [20]

    Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449Google Scholar

    [21]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903Google Scholar

    [22]

    Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics J. 9 1500408

    [23]

    He H S, Chen Z, Li H B, Dong J 2018 Laser Phys. 28 055802Google Scholar

    [24]

    Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49

  • 图 1  种子注入螺旋手性控制调Q固体激光器原理性方案

    Fig. 1.  Schematic of the chirality control by injection seeding in the Q-switched vortex laser.

    图 2  种子注入下$ {\text{L}}{{\text{G}}_{0, 2}} $模两个相反手性光场的脉冲过程 (a) 种子功率 1 nW; (b) 种子功率10 nW; (c) 种子功率100 nW; (d) 种子功率1 μW

    Fig. 2.  Pulse processes of the photons with opposite chirality under injection seeding: (a) Seed power 1 nW; (b) seed power 10 nW; (c) seed power 100 nW; (d) seed power 1 μW.

    图 3  脉冲建立时间随注入信噪比的变化

    Fig. 3.  Dependence of the pulse build-up time on the injected signal-to-noise ratio.

    图 4  手性纯净度随注入信噪比的变化

    Fig. 4.  Dependence of the chirality purity on the injected signal-to-noise ratio.

    图 5  两相反手性驻波场的空间交叠 (a) $ {\text{L}}{{\text{G}}_{{\text{0,1}}}} $模式两手性驻波场的空间分布, 第一行为左手性驻波场, 第二行为右手性驻波场; (b) 空间交叠积分随角向阶次的变化

    Fig. 5.  Overlapping of the standing wave with opposite chirality: (a) Spatial profile of the standing wave with opposite chirality of the mode $ {\text{L}}{{\text{G}}_{{\text{0,1}}}} $, the first row shows the patterns with left chirality and the second row shows the patters with right chirality; (b) dependence of the overlapping integral on the mode angular order.

    图 6  阈值注入信噪比随角向阶次的变化

    Fig. 6.  Dependence of the threshold injected signal-to-noise ratio on the angular order.

    图 7  单脉冲能量特性 (a) 单脉冲能量随注入信噪比的变化; (b) 注入状态下的单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $与角向阶次的关系

    Fig. 7.  Characteristics of the pulse energy (a) Dependence of the pulse energy on the injected signal-to-noise ratio; (b) dependence of the pulse energy ratio under injection to that under free running on the angular order.

    图 8  抽运功率对阈值注入信噪比和单脉冲能量的影响(a), (c)分别为不同抽运功率下手性纯净度和单脉冲能量随注入信噪比的变化; (b) 阈值注入信噪比随抽运功率的变化; (d) 注入状态下的单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $随抽运功率的变化

    Fig. 8.  The effect of the pumping power on the threshold injected signal-to-noise ratio and pulse energy: (a), (c) The chirality purity and the pulse energy under different injected signal-to -noise ratio; (b) dependence of the threshold injected signal-to-noise ratio on pump power; (d) dependence of the pulse energy ratio under injection to that under free running on the pump power.

    图 9  阈值注入信噪比(a), 相反手性驻波场的交叠积分(b), 注入状态下单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $(c)随输出镜反射率的变化

    Fig. 9.  Dependence of the injected signal-to-noise ratio (a), overlapping integral of the standing wave pattern with opposite chirality (b), the pulse energy ratio under injection to that under free running (c) on the reflectivity of the output mirror.

    图 10  阈值注入信噪比(a), 注入状态下单脉冲能量与自由运转状态下的单脉冲能量的比值$ \delta $(b)随谐振腔长度的变化

    Fig. 10.  Dependence of the injected signal-to-noise ratio (a), the pulse energy ratio under injection to that under free running (b) on cavity length.

    图 11  基模光束经2阶角向相位调制后的光斑(a)和径向模谱(b)

    Fig. 11.  The intensity profile the fundamental mode beam with second order angular phase modulation (a) and its radial spectrum (b)

    图 12  不同的环形抽运光环带宽度下脉冲的径向模谱 (a) $ {\omega _{{\text{pump}}}} = 0.8 $mm; (b) $ {\omega _{{\text{pump}}}} = 0.6 $mm; (c) $ {\omega _{{\text{pump}}}} = 0.4 $mm; (d) $ {\omega _{{\text{pump}}}} = $$ 0.2 $mm

    Fig. 12.  The radial spectrum of the pulse with different pump ring width: (a) $ {\omega _{{\text{pump}}}} = 0.8 $mm; (b) $ {\omega _{{\text{pump}}}} = 0.6 $mm; (c) $ {\omega _{{\text{pump}}}} = $$ 0.4 $mm; (d) $ {\omega _{{\text{pump}}}} = 0.2 $mm.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Cheng M J, Jiang W J, Guo L X, Li J T, Forbes A 2025 Light: Sci. Appl. 14 4Google Scholar

    [3]

    Yang Y J, Ren Y X, Chen M Z, Arita Y, Rosales-Guzman C 2021 Adv. Photonics 3 034001

    [4]

    王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林 2015 物理学报 64 034204Google Scholar

    Wang Y D, Gan X T, Ju P, Pang Y, Yuan L G, Zhao J L 2015 Acta Phys. Sin. 64 034204Google Scholar

    [5]

    陈理想, 张远颖 2015 物理学报 64 164210Google Scholar

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210Google Scholar

    [6]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90Google Scholar

    [7]

    Hong L, Guo H X, Qiu X D, Lin F, Zhang W H Chen L X 2023 Advanced Photonics Nexus 2 046008

    [8]

    赵婷, 宫毛毛, 张松斌 2024 物理学报 73 244201Google Scholar

    Zhao T, Gong M M, Zhang S B 2024 Acta Phys. Sin. 73 244201Google Scholar

    [9]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [10]

    Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2 1002Google Scholar

    [11]

    Wen Y, Pan Z Q 2023 J. Lightwave Technol. 41 2007Google Scholar

    [12]

    杨苏辉, 廖英琦, 林学彤, 刘欣宇, 齐若伊, 郝燕 2021 红外与激光工程 50 20211040Google Scholar

    Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021 Infrared Laser Eng. 50 20211040Google Scholar

    [13]

    李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203Google Scholar

    Li R N, Xue J J, Song D, Li X, Wang D, Yang B D, Zhou H T 2025 Acta Phys. Sin. 74 044203Google Scholar

    [14]

    刘伟, 贾青, 郑坚 2024 物理学报 73 055203Google Scholar

    Liu W, Jia Q, Zheng J 2024 Acta Phys. Sin. 73 055203Google Scholar

    [15]

    柳强, 潘婧, 万震松, 申艺杰, 张恒康, 付星, 巩马理 2020 中国激光 47 0500006Google Scholar

    Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong M L 2020 Chin. J. Lasers 47 0500006Google Scholar

    [16]

    Forbes A 2019 Laser Photonics Rev. 13 1900140Google Scholar

    [17]

    Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan D Y 2018 Laser Photonics Rev. 12 180019

    [18]

    Litvin I A, Ngcobo S, Naidoo D, Ait-Ameur K, Forbes A 2014 Opt. Lett. 39 704Google Scholar

    [19]

    Kim D J, Kim J W 2017 Opt. Commun. 383 26Google Scholar

    [20]

    Kim D J, Kim J W, Clarkson W A 2013 Opt. Express 21 29449Google Scholar

    [21]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903Google Scholar

    [22]

    Liu Q Y, Zhao Y G, Zhou W, Zhang J N, Wang Li, Yao W C, Shen D Y 2017 IEEE Photonics J. 9 1500408

    [23]

    He H S, Chen Z, Li H B, Dong J 2018 Laser Phys. 28 055802Google Scholar

    [24]

    Koechner W 2013 Solid-State Laser Engineering (New York: Springer) pp22–49

  • [1] 秦雪云, 吴越, 朱榕琪, 朱竹青. 基于微米级全光磁全息结构的涡旋光生成实验研究. 物理学报, 2025, 74(17): 174202. doi: 10.7498/aps.74.20250649
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, 2024, 73(24): 244201. doi: 10.7498/aps.73.20241378
    [3] 王滔宁, 姜玲玲, 程庭清, 王礼, 江海河. 2.94 μm LiNbO3声光调Q Er:YAG激光输出脉冲特性. 物理学报, 2024, 73(4): 044205. doi: 10.7498/aps.73.20231616
    [4] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [5] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [6] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [7] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [8] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [9] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [10] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [11] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [12] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [13] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [14] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [15] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究. 物理学报, 2007, 56(5): 2663-2669. doi: 10.7498/aps.56.2663
    [16] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [17] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究. 物理学报, 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [18] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究. 物理学报, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [19] 尚连聚. 端面抽运固体激光器的腔模匹配分析. 物理学报, 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
计量
  • 文章访问数:  393
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-22
  • 修回日期:  2025-06-24
  • 上网日期:  2025-07-17
  • 刊出日期:  2025-09-05

/

返回文章
返回