-
钒碳化物通常作为金属材料的增强相,其弹性和延展-脆性特性对于力学性能至关重要。本研究基于特殊准随机结构(SQS)方法和第一性原理计算系统探讨了多组分V1-xFexC系碳化物的稳定性、电子结构、机械性能和及热性质随元素Fe含量变化的规律。研究结果表明,5种组分(V0.125Fe0.875C、V0.25Fe0.75C、V0.5Fe0.5C、V0.75Fe0.25C和V0.875Fe0.125C)随着元素Fe含量的减小稳定性提高,V1-xFexC系碳化物键合类型以共价键、金属键和离子键的混合特征为主。相较于V1-xFexC系其他的其他碳化物,V0.875Fe0.125C由于高的共价键强度表现出高的弹性模量和硬度,元素Fe的掺杂引入显著影响V1-xFexC碳化物的晶格振动模式和电子结构,V0.875Fe0.125C碳化物较高的德拜温度同样印证了其高温下优异的机械强度。此外,热导率的计算不仅指导V₁₋ₓFeₓC系碳化物的实验选择,同时为开发高性能耐高温涂层提供重要的理论支持。
-
关键词:
- 钢 /
- V1-xFexC碳化物 /
- 第一性原理计算 /
- SQS /
- 物理性质
Vanadium carbides commonly serve as strengthening phases in metallic materials, where their elastic and ductile-brittle characteristics are critical for mechanical performance. This study systematically investigates the structural stability, electronic properties, mechanical behavior, and thermal characteristics of multi-component V1-xFeₓC carbides using first-principles calculations, aiming to elucidate the influence of Fe content on their physical properties and provide a theoretical basis for the design and application of carbides in high-performance steels. The calculations were performed using the Vienna Ab initio Simulation Package (VASP) based on density functional theory (DFT). Special quasirandom structures (SQS) were employed to construct five carbide models with varying Fe/V ratios (from V0.125Fe0.875C to V0.875Fe0.125C). Key parameters including formation enthalpy, electronic density of states, elastic constants, Debye temperature, and thermal conductivity were computed. The results indicate that as the Fe content decreases, the formation enthalpy shifts from positive to negative, reflecting a significant improvement in thermodynamic stability. Electronic structure analyses reveal metallic behavior across all compositions, with stronger covalent bonding in V-C compared to Fe–C. The V0.875Fe0.125C carbide exhibits the highest elastic modulus (C₁₁ = 615.80 GPa) and Vickers hardness (21.06 GPa), attributed to its strong covalent interactions, though it also shows increased brittleness. The Debye temperature rises with decreasing Fe content, further confirming superior mechanical strength at elevated temperatures. Thermal conductivity calculations show that V0.875Fe0.125C reaches values of 9.427 W·m⁻¹·K⁻¹ at 300 K and 2.357 W·m⁻¹·K⁻¹ at 1300 K. Its minimum lattice thermal conductivity (2.001 W·m⁻¹·K⁻¹) is comparable to that of typical thermal barrier coating materials, demonstrating high potential for high-temperature thermal insulation. This study reveals the structure-property relationships in V1-xFeₓC carbides at the atomic scale, indicating that low-Fe compositions are advantageous for high-temperature and high-strength applications. These findings provide important theoretical support for the development of novel heat-resistant coatings and high-strength steels.-
Keywords:
- steel /
- V1-xFexC carbides /
- first-principles calculations /
- SQS /
- physical properties
-
[1] Williams W S 1971 Prog. Solid State Chem. 6 57.
[2] Chen Y, Ye C, Chen X, Hu H 2024 Metals 14 175.
[3] Kang J L, Sun X J, Li Z D, Yong Q L 2015 50 64.(in Chinese) [康俊雨, 孙新军, 李昭东, 雍岐龙2015 钢铁 50 64.]
[4] Giang N A, Kuna M, Hütter G 2017 Theor. Appl. Fract. Mech. 92 89.
[5] Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401.
[6] Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208.
[7] Li X, Zhang X, Qin J, Zhang S, Ning J, Jing R, Ma M, Liu R 2014 J. Phys. Chem. Solids 75 1234.
[8] Zhang D, Tang X H, Humphries E, Li D Y 2023 Wear 523 204808.
[9] Sun C, Zheng Y, Chen L, Fang F, Zhou X F, Jiang J Q 2022 J. Alloys Compd. 895 162649.
[10] Zhang D, Hou T, Quan X, Jie Zhou, Yin C C, Lin H F, Lu Z H 2023 J Mater. Res. Technol. 25 210.
[11] Kohn W, Becke A D, Parr R G 1996 J. Phys. Chem. 100 12974.
[12] Blöchl P E 1994 Phys. Rev. B 50 17953.
[13] van de Walle A, Tiwary P, de Jong M, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13.
[14] Yu R, Zhu J, Ye H Q 2010 Comput. Phys. Commun 181 671.
[15] Zhang M L, Chen Y H, Zhang C R, L G P 2019 Acta Phys. Sin. 68 087101 (in Chinese) [张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101.]
[16] Zhang D, Xiang R, Sun Y 2025 Mol. Phys. 123 e2379994.
[17] Kobayashi S, Ikuhara Y, Mizoguchi T 2018 Phy. Rev. B 98 134114.
[18] Mishra S, Ganguli B 2013 J. Solid State Chem. 200 279.
[19] Yamada K, Yosida K, Hanzawa K 1992 Prog. Theor. Phys. Suppl. 108 141.
[20] Bader R F W 1985 Acc. Chem. Res. 18 9.
[21] Guo L, Tang Y, Cui J, Li J, Yang J R, Li D Y 2021Scr. Mater. 190 168.
[22] Wu Y, Ma L, Zhou X, Duan Y, Shen L, Peng M 2022 Int. J. Refract. Met. Hard Mater 109 105985.
[23] Zhang D, Hou T P, Liang X, Zheng P, Zheng Y H, Lin H F, Wu K M 2022 Vacuum 203 111175.
[24] Soni P, Pagare G, Sanyal S P 2021 J. Phys. Chem. Solids 72 810.
[25] Zuo L, Humbert M, Esling C 1992 J. Appl. Crystallogr. 25 751.
[26] Pugh S F 1954 Lond. Edinb. Phil. Mag 45 823.
[27] Pettifor D G 1992 Mater. Sci. Technol. 8 345.
[28] Niu H, Niu S, Oganov A R 2019 J. Appl. Phys. 125 065105.
[29] Munro R G, Freiman S W, Baker T L 1998 Natl. Inst. Stand. Technol. 158 6153.
[30] Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 13710 (in Chinese)[王坤, 徐鹤嫣, 郑雄, 张海丰 2025 物理学报74 137101.]
[31] Yang J, Shahid M, Wan C, Jing F, Pan W 2017 J. Eur. Ceram. Soc.37 689.
[32] Shindé S L, Goela J 2006 High thermal conductivity materials (New York: Springer) pp111-123.
[33] Arab F, Sahraoui F A, Haddadi K, Bouhemadou A, Louail L 2016 Phase Transit 89 480.
[34] Ahmed T, Roknuzzaman M, Sultana A, Biswas A, Safin A M, Saiduzzaman M, Hossain K M 2021 Mater. Today Commun 29 102973.
[35] Vagge S T, Ghogare S 2022 Mater. Today 56 1201.
[36] Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742.
[37] Feng J, Xiao B, Zhou R, Pan W, Clarke D R 2912 Acta Mater. 60 3380.
计量
- 文章访问数: 78
- PDF下载量: 1
- 被引次数: 0