搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaZrO3纳米晶添加的MOD-YBa2Cu3O7-δ涂层导体性能提升研究

吴文静 陈静 黄荣铁 李敏娟 刘志勇 蔡传兵

引用本文:
Citation:

BaZrO3纳米晶添加的MOD-YBa2Cu3O7-δ涂层导体性能提升研究

吴文静, 陈静, 黄荣铁, 李敏娟, 刘志勇, 蔡传兵

Research on enhancing the performance of MOD-YBa2Cu3O7-δ coated conductor through the incorporation of BaZrO3 nanocrystals

WU Wenjing, CHEN Jing, HUANG Rongtie, LI Minjuan, LIU Zhiyong, CAI Chuanbing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为解决传统元素掺杂YBa2Cu3O7-δ (YBCO)薄膜时掺杂相尺寸不可控和分布不均匀的问题, 本文采用预制纳米晶添加技术在YBCO高温超导带材中引入了弥散分布的小尺寸BaZrO3 (BZO)纳米晶作为磁通钉扎中心, 显著提高了YBCO薄膜在低温下的在场性能. 本研究系统研究了原始尺寸约为8 nm的BZO纳米晶不同浓度的添加效果. 实验结果表明, 在4.2, 30和77 K温度条件下, BZO纳米晶添加对YBCO的自场和在场性能提升的最佳摩尔百分比浓度为8%. 在30 K@3 T时, BZO-8%的Fp约为92.06 GN/m3, 分别是BZO-4%和原始样品的1.54倍和2.3倍.
    Introducing nano heterogeneous phases into YBa2Cu3O7-δ (YBCO) superconducting films is a common way to improve its flux pinning properties and in-field performances. The heterogeneous phases generated through traditional element doping strategies is highly sensitive to the sintering conditions, making the growth of the nano inclusions difficult to control under high-temperature environments. Unintended large-scale growth and aggregation of the doped phases can significantly reduce the efficiency of flux pinning of YBCO superconducting films, thereby limiting the overall enhancement of pinning performance in superconducting thin films. This occurs because the size of the vortex core (≈2ξ) cannot be effectively matched with excessively large defects. To address this challenge, the incorporation of monodisperse, small-sized prefabricated nanocrystals into YBCO superconducting coated conductors fabricated by the metal organic deposition (MOD) method offers an effective solution. This method can significantly improve the uniformity of heterogeneous phase size and spatial distribution, enabling the formation of dispersed and size-controllable artificial flux pinning centers. Such a strategy represents one of the most promising methods of enhancing magnetic flux pinning and increasing the critical current density under applied magnetic fields through MOD route. In this study, the prefabricated nanocrystals addition technology is adopted to introduce the mono-dispersed small-sized BaZrO3 (BZO) nanocrystals as flux pinning centers in YBCO high-temperature superconducting tapes, resulting in the significant enhancement of the in-field performance of YBCO films at low temperatures. This study systematically examines the effects of adding BZO nanocrystals with an initial size of approximately 8 nm at various mol concentrations from 4% to 10%. The results indicate that the optimal mole concentration for improving both self-field and field properties of YBCO is 8% BZO under temperature conditions of 4.2, 30, and 77 K. At 30 K and 3 T, the Fp value for the sample with a mole concentration of 8% BZO is approximately 92.06 GN/m3, which is 1.54 times higher than that of the mole concentration of 4% BZO sample and 2.3 times higher than that of the original sample.
  • 图 1  (a) BZO纳米晶的TEM图像; (b) XRD图谱; (c) 平均粒径为(8 ± 2) nm的粒径分布曲线; (d) BZO纳米晶在乙醇和YBCO前驱体溶液中的动态光散射(DLS)粒径分布曲线

    Fig. 1.  (a) TEM image of BZO nanocrystals; (b) XRD pattern; (c) size distribution profile indicating an average particle size of (8 ± 2) nm; (d) dynamic light scattering (DLS) particle size distribution curves of BZO nanocrystals in ethanol and YBCO precursor solutions.

    图 2  (a) 不同BZO浓度下BZO-YBCO膜的XRD谱图; (b) 添加摩尔百分比浓度为10% BZO纳米晶的YBCO膜的(005)-ω扫描图和(c) (103)-φ扫描图; (d) 添加不同BZO浓度下面外ω-(005)扫描图和面内φ-(103) YBCO膜的FWHM图

    Fig. 2.  (a) The XRD patterns of the BZO-YBCO films with different BZO concentrations and (b) the (005)-ω scan and (c) (103)-φ scan of the BZO nanocrystal added YBCO film with 10 mol/mol; (d) FWHM of out-of-plane ω-(005) scan and in-plane φ-(103) YBCO films added with different BZO concentrations.

    图 3  YBCO纳米复合膜的组成与微观结构 (a) TEM横截面图; (b), (c) 高分辨率TEM图像(显示YBCO基体内孤立的、随机取向的BZO颗粒); (d) 粗化前后BZO纳米晶的粒径分布

    Fig. 3.  Composition and microstructure of the YBCO nanocomposite film: (a) TEM cross-sectional image; (b) high-resolution TEM image showing isolated, randomly oriented BaZrO3 particles within the YBCO matrix; (c) particle size distribution comparison of BZO nanocrystals before and after coarsening.

    图 4  不同浓度BZO纳米晶的YBCO薄膜在77 K下的自场Ic. 每条YBCO带长约1 m

    Fig. 4.  Self-field Ic of YBCO films with different BZO concentrations at 77 K. Each tape is about 1 meter.

    图 5  不同温度下添加不同浓度BZO纳米晶的YBCO薄膜的临界电流密度(Jc)和钉扎力(Fp)随磁场的变化 (a) 4.2 K; (b) 30 K; (c) 不同温度和磁场条件下加入不同浓度BZO的YBCO薄膜的临界电流(Ic)的变化趋势

    Fig. 5.  Variation of critical current density (Jc) and pinning force (Fp) with magnetic field for YBCO films with different concentrations of BZO nanocrystals at various temperatures: (a) 4.2 K; (b) 30 K; (c) the variation trend of critical current (Ic) for YBCO films with different concentrations of BZO addition under various temperatures and magnetic field conditions.

  • [1]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [2]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Rep. Prog. Phys. 79 116501Google Scholar

    [3]

    MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [4]

    Foltyn S R, Civale L, MacManus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar

    [5]

    Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R, Civale L 2009 Nat. Mater. 8 398Google Scholar

    [6]

    Zhang S, Xu S, Fan Z, Jiang P, Han Z, Yang G, Chen Y 2018 Supercond. Sci. Technol. 31 125002Google Scholar

    [7]

    Araki T, Hirabayashi I 2003 Supercond. Sci. Technol. 16 R71Google Scholar

    [8]

    Matias V, Rowley E J, Coulter Y, Maiorov B, Holesinger T, Yung C, Glyantsev V, Moeckly B 2010 Supercond. Sci. Technol. 23 014018Google Scholar

    [9]

    Li Z, Coll M, Mundet B, Chamorro N, Valles F, Palau A, Gazquez J, Ricart S, Puig T, Obradors X 2019 Sci. Rep. 9 5828Google Scholar

    [10]

    Miura M, Yoshizumi M, Izumi T, Shiohara Y 2010 Supercond. Sci. Technol. 23 014013Google Scholar

    [11]

    Miura M, Maiorov B, Balakirev F F, Kato T, Sato M, Takagi Y, Izumi T, Civale L 2016 Sci. Rep. 6 20436Google Scholar

    [12]

    Tinkham M, Emery V 1996 Phys. Today 49 74

    [13]

    Rijckaert H, Pollefeyt G, Sieger M, Hänisch J, Bennewitz J, De Keukeleere K, De Roo J, Hühne R, Bäcker M, Paturi P, Huhtinen H, Hemgesberg M, Van Driessche I 2017 Chem. Mater. 29 6104Google Scholar

    [14]

    Díez-Sierra J, López-Domínguez P, Rijckaert H, Rikel M, Hänisch J, Khan M Z, Falter M, Bennewitz J, Huhtinen H, Schäfer S, Müller R, Schunk S A, Paturi P, Bäcker M, De Buysser K, Van Driessche I 2020 ACS Appl. Nano Mater. 3 5542Google Scholar

    [15]

    Huang R, Chen J, Liu Z, Dou W, Zhang N, Cai C 2023 Supercond. Sci. Technol. 36 125002Google Scholar

    [16]

    Yang L, Huang R, Zhou X, Chen J, Liu Z, Li M, Wang G, Cai C 2024 Supercond. Sci. Technol. 37 065017Google Scholar

    [17]

    Obradors X, Puig T, Li Z, Pop C, Mundet B, Chamorro N, Vallés F, Coll M, Ricart S, Vallejo B, Pino F, Palau A, Gázquez J, Ros J, Usoskin A 2018 Supercond. Sci. Technol. 31 044001Google Scholar

    [18]

    Fan F, Lu Y, Liu Z, Zhou D, Guo Y, Bai C, Li M, Cai C 2020 Supercond. Sci. Technol. 33 055003Google Scholar

    [19]

    Chen J, Huang R, Zhou D, Li M, Bai C, Liu Z, Cai C 2022 J. Eur. Ceram. Soc. 42 6542Google Scholar

    [20]

    Chen J, Zhou X, Huang R, Li M, Liu Z, Cai C 2024 Thin Solid Films 804 140502Google Scholar

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, doi: 10.7498/aps.73.20240124
    [2] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, doi: 10.7498/aps.69.20201125
    [3] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, doi: 10.7498/aps.67.20170822
    [4] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, doi: 10.7498/aps.66.167401
    [5] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响. 物理学报, doi: 10.7498/aps.64.247401
    [6] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, doi: 10.7498/aps.63.047502
    [7] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, doi: 10.7498/aps.62.197401
    [8] 丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微. 掺杂Y2O3和BaCeO3提高MOD-YBCO超导性能的研究. 物理学报, doi: 10.7498/aps.62.137401
    [9] 丁发柱, 古宏伟. 前驱液成分对TFA-MOD法制备YBa2Cu3O7-x薄膜超导性能的影响. 物理学报, doi: 10.7498/aps.59.8142
    [10] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, doi: 10.7498/aps.57.4371
    [11] 何 萌, 吕惠宾, 周岳亮, 程波林, 陈正豪, 金奎娟, 杨国桢. YBa2Cu3O7-δ/SrNb0.01Ti0.99O3 p-n结的制备及其特性. 物理学报, doi: 10.7498/aps.54.1370
    [12] 刘峰, 黄钧伟, 刘伟, 肖玲, 任洪涛, 焦玉磊, 郑明辉, 阎守胜. 弱场下熔融织构YBa2Cu3O7-δ样品局域磁通蠕动的实验研究. 物理学报, doi: 10.7498/aps.50.2001
    [13] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗. 物理学报, doi: 10.7498/aps.50.1359
    [14] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, doi: 10.7498/aps.50.1590
    [15] 王智河, 曹效文, 方 军, 陈治友, 李可斌. YBa2Cu3O7-δ外延薄膜的不可逆线与磁通玻璃线. 物理学报, doi: 10.7498/aps.48.154
    [16] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势. 物理学报, doi: 10.7498/aps.47.1720
    [17] 胡刚进, 方明虎, 李钟贤, 曾兴斌, 陈南松, 焦正宽, 张其瑞, 张贻瞳, 金新, 姚希贤. YBa2Cu3Oy中氧缺位的磁通钉扎效应. 物理学报, doi: 10.7498/aps.42.1669
    [18] 张贻瞳, 金新, 张长贵, 金继荣, 姚希贤, 吉争鸣, 孙志坚, 杨森祖. YBa2Cu3O7-δ薄膜热激发磁通蠕动研究. 物理学报, doi: 10.7498/aps.42.1174
    [19] 金新, 张贻瞳, 陆瑞熙, 姚希贤, 刘奉生, 牟慧麟, 吴晓祖, 周廉. Yba2Cu3O7-δ不可逆线与钉扎势的关联. 物理学报, doi: 10.7498/aps.41.123
    [20] 范宏昌, 金新, 鹿牧, 张贻瞳, 徐小农, 姚希贤. 熔融织构YBa2Cu3O7-y各向异性临界电流密度的磁测量. 物理学报, doi: 10.7498/aps.41.317
计量
  • 文章访问数:  425
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-07-28
  • 上网日期:  2025-08-14

/

返回文章
返回