-
本研究为解决传统元素掺杂YBa2Cu3O7-δ(YBCO)薄膜时掺杂相尺寸不可控和分布不均匀的问题,采用预制纳米晶添加技术在YBCO高温超导带材中引入了弥散分布的小尺寸BaZrO3(BZO)纳米晶作为磁通钉扎中心,显著地提高了YBCO薄膜在低温下的在场性能。本研究系统研究了原始尺寸约为8 nm的BZO纳米晶不同浓度的添加效果。实验结果表明,在4.2 K、30 K和77 K温度条件下,BZO纳米晶添加对YBCO的自场和在场性能提升的最佳浓度为8 mol%。在30 K@3 T时,BZO-8 mol%的Fp约为92.06 GN/m3,分别是BZO-4 mol%和原始样品的1.54倍和2.3倍。
-
关键词:
- YBa2Cu3O7-δ /
- 磁通钉扎 /
- BaZr3添加 /
- 临界电流密度
Introducing nano heterogeneous phases into YBa2Cu3O7-δ (YBCO) superconducting films is a common way to improve its flux pinning properties and in-field performances. The heterogeneous phases generated through traditional element doping strategies is highly sensitive to the sintering conditions, making the growth of the nano inclusions difficult to control under high-temperature environments. Unintended large-scale growth and aggregation of the doped phases can significantly reduce the efficiency of flux pinning of YBCO superconducting films, thereby limiting the overall enhancement of pinning performance in superconducting thin films. This occurs because the size of the vortex core (≈ 2ξ) cannot be effectively matched with excessively large defects. To address this challenge, the incorporation of monodisperse, small-sized prefabricated nanocrystals into YBCO superconducting coated conductors fabricated via the metal organic deposition (MOD) method offers an effective solution. This approach can significantly improve the uniformity of heterogeneous phase size and spatial distribution, enabling the formation of dispersed and size-controllable artificial flux pinning centers. Such a strategy represents one of the most promising methods for enhancing magnetic flux pinning and increasing the critical current density under applied magnetic fields via MOD route. In this study, we adopted the prefabricated nanocrystals addition technology to introduce the mono-dispersed small-sized BaZrO3(BZO) nanocrystals as flux pinning centers in YBCO high-temperature superconducting tapes, resulting the significant enhancement of the in-field performance of YBCO films at low temperatures. This study systematically examined the effects of adding BZO nanocrystals with an initial size of approximately 8 nm at various concentrations from 4 mol% to 10 mol%. The results indicate that the optimal concentration for improving both self-field and field properties of YBCO is 8 mol% BZO under temperature conditions of 4.2 K, 30 K, and 77 K. At 30 K and 3 T, the Fp value for the sample with 8 mol% BZO was approximately 92.06 GN/m3, which is 1.54 times higher than that of the 4 mol% BZO sample and 2.3 times higher than that of the original sample.-
Keywords:
- YBa2Cu3O7-δ /
- flux pinning /
- BaZr3 addition /
- critical current
-
[1] Obradors X, Puig T 2014 Supercond. Sci.Technol. 27 044003
[2] Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Rep Prog Phys 79 116501
[3] MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439
[4] Foltyn S R, Civale L, MacManus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631
[5] Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R, Civale L 2009 Nat. Mater. 8 398
[6] Zhang S, Xu S, Fan Z, Jiang P, Han Z, Yang G, Chen Y 2018 Supercond. Sci.Technol. 31 125002
[7] Araki T, Hirabayashi I 2003 Supercond. Sci.Technol. 16 R71
[8] Matias V, Rowley E J, Coulter Y, Maiorov B, Holesinger T, Yung C, Glyantsev V, Moeckly B 2010 Supercond. Sci.Technol. 23 014018
[9] Li Z, Coll M, Mundet B, Chamorro N, Valles F, Palau A, Gazquez J, Ricart S, Puig T, Obradors X 2019 Sci Rep 9 5828
[10] Miura M, Yoshizumi M, Izumi T, Shiohara Y 2010 Supercond. Sci.Technol. 23 014013
[11] Miura M, Maiorov B, Balakirev F F, Kato T, Sato M, Takagi Y, Izumi T, Civale L 2016 Sci Rep 6 20436
[12] Tinkham M, Emery V 1996 Physics Today 49 74
[13] Rijckaert H, Pollefeyt G, Sieger M, Hänisch J, Bennewitz J, De Keukeleere K, De Roo J, Hühne R, Bäcker M, Paturi P, Huhtinen H, Hemgesberg M, Van Driessche I 2017 Chem. Mater. 29 6104
[14] Díez-Sierra J, López-Domínguez P, Rijckaert H, Rikel M, Hänisch J, Khan M Z, Falter M, Bennewitz J, Huhtinen H, Schäfer S, Müller R, Schunk S A, Paturi P, Bäcker M, De Buysser K, Van Driessche I 2020 ACS Appl. Nano Mater 3 5542
[15] Huang R, Chen J, Liu Z, Dou W, Zhang N, Cai C 2023 Supercond. Sci.Technol. 36 125002
[16] Yang L, Huang R, Zhou X, Chen J, Liu Z, Li M, Wang G, Cai C 2024 Supercond. Sci.Technol. 37 065017
[17] Obradors X, Puig T, Li Z, Pop C, Mundet B, Chamorro N, Vallés F, Coll M, Ricart S, Vallejo B, Pino F, Palau A, Gázquez J, Ros J, Usoskin A 2018 Supercond. Sci.Technol. 31 044001
[18] Fan F, Lu Y, Liu Z, Zhou D, Guo Y, Bai C, Li M, Cai C 2020 Supercond. Sci.Technol. 33 055003
[19] Chen J, Huang R, Zhou D, Li M, Bai C, Liu Z, Cai C 2022 J. Eur. Ceram. Soc. 42 6542
[20] Chen J, Zhou X, Huang R, Li M, Liu Z, Cai C 2024 Thin Solid Films 804 140502
计量
- 文章访问数: 46
- PDF下载量: 2
- 被引次数: 0