搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化同轴枪等离子体动力学特征

王震 刘金垚 张津硕 姜楠 闫慧杰 宋健

引用本文:
Citation:

磁化同轴枪等离子体动力学特征

王震, 刘金垚, 张津硕, 姜楠, 闫慧杰, 宋健
cstr: 32037.14.aps.74.20250733

Plasma dynamics characteristics of magnetized coaxial gun

WANG Zhen, LIU Jinyao, ZHANG Jinshuo, JIANG Nan, YAN Huijie, SONG Jian
cstr: 32037.14.aps.74.20250733
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 磁化同轴枪是一种高效的等离子体注入装置, 在核聚变注料、宇宙射流模拟和磁重联研究中具有重要的应用价值. 本文基于高速成像和磁场测量技术, 观察到球马克、扩散与射流3种磁化同轴枪放电过程中的典型模式, 并系统研究了不同模式下等离子体的动力学特征. 其后结合理想磁流体力学(MHD)理论, 对不同模式下等离子体的磁场位形、旋转行为与轴向运动的内在机制进行深入分析. 结果表明, 球马克模式下, 等离子体达到泰勒弛豫状态, 实现整体匀速旋转, 形成稳定的紧凑环(CT)结构; 在扩散模式中, 偏置磁场较强导致旋转速度较大, 离心力增强, 进而引发剧烈的径向扩散; 射流模式中, 由于偏置磁场较弱, 等离子体聚集于内电极头部, 呈现箍缩效应, 最终形成具有轴向不稳定性的射流柱结构. 该研究结果不仅加深了对磁化同轴枪放电物理过程的认识, 也为数值模拟与高效等离子体源的设计提供了一定的实验基础和理论支持.
    The magnetized coaxial gun is an efficient plasma injection device with significant applications in fusion fueling, astrophysical jet simulation, and magnetic reconnection studies. In this work, three typical discharge regions, i.e. spheromak region, diffusive region, and jet region, are observed through high-speed imaging and magnetic field measurements. The dynamic characteristics of the plasma in each region are systematically investigated. Based on ideal magnetohydrodynamic (MHD) theory, the magnetic field configurations, rotational behavior, and axial motion mechanisms of the plasma in different regions analyzed in detail. The results show that in the spheromak region, the plasma reaches a Taylor-relaxed state, exhibiting uniform rotation and forming a stable compact torus (CT) structure. In the diffusive region, a relatively strong bias magnetic field leads to faster rotation, enhancing centrifugal force, and consequently, enhancing radial diffusion. In the jet region, due to the weaker bias field, the plasma accumulates at the end of the inner electrode, exhibiting a clear pinch effect and forming a jet with axial instability. These findings not only deepen the understanding of the discharge physics of magnetized coaxial guns but also provide valuable experimental and theoretical support for numerically simulating and developing efficient plasma sources.
      通信作者: 宋健, songjian@dlut.edu.cn
    • 基金项目: 国家磁约束聚变能发展研究专项(批准号: 2024YFE03130000)和中央高校基本科研业务费(批准号: DUT24GF110, DUTZD25112)资助的课题.
      Corresponding author: SONG Jian, songjian@dlut.edu.cn
    • Funds: Project supported by the National MCF Energy R&D Program, China (Grant No. 2024YFE03130000) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT24GF110, DUTZD25112).
    [1]

    漆亮文 2022 博士学位论文(大连: 大连理工大学)

    Qi L W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [2]

    Dong Q L, Kong D F, Wu X H, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W Z, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Bai W, Yang D Z, Wen F, Zi P F, Li L, Hu G H, Zhang S B, Zhuang G 2022 Plasma Sci. Techn. 24 025103Google Scholar

    [3]

    Dong Q L, Zhang J, Lan T, Xiao C J, Zhuang G, Chen C, Zhou Y K, Wu J, Long T, Nie L, Lu P C, Wang T X, Wu J R, Deng P, Wang X K, Bai Z Q, Huang Y H, Li J, Xue L, Yolbarsop A, Mao W Z, Zhou C, Liu A, Wu Z W, Xie J L, Ding W X, Liu W D, Chen W, Zhong W L, Xu M, Duan X R 2024 Plasma Sci. Techn. 26 075102Google Scholar

    [4]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instruments 87 053512Google Scholar

    [5]

    Lan T, Chen C, Xiao C J, Ding W X, Wu J, Mao W Z, Zhang S, Kong D F, Zhang S B, Wu Z W, Dong Q L, Zhou Y K, Xu H Q, Wu J R, Wei Z A, Wen X H, Wang H, Zhou C, Liu A D, Li H, Xie J L, Liu W D, Zhuang G 2024 Plasma Sci. Techn. 26 105102Google Scholar

    [6]

    Tan M S, Ye Y, Kong D F, Dong Q L, Zhao Z H, Li Y H, Li B, Wen F, Huang Y Q, Tang L H, Li T Q, Zi Z, Zhong F B, Pei M X, Liu X Q, Zhang X H, Zhang S B 2024 Fusion Eng. Design 205 114559Google Scholar

    [7]

    Moser A L, Bellan P M 2012 Nature 482 379Google Scholar

    [8]

    Bellan P M 2018 Journal of Plasma Physics 84 755840501Google Scholar

    [9]

    Bellan P M 2018 Plasma Physics and Controlled Fusion 60 019501Google Scholar

    [10]

    Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024 Systems Engineering and Electronics 46 262

    [11]

    Cheng J, Tang H B, York T M 2014 Physics of Plasmas 21 063501Google Scholar

    [12]

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202 [赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真 2021 物理学报 70 205202]Google Scholar

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202Google Scholar

    [13]

    Geddes C G R, Kornack T W, Brown M R 1998 Phys. Plasmas 5 1027Google Scholar

    [14]

    Yee J, Bellan P M 2000 Phys. Plasmas 7 3625Google Scholar

    [15]

    Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103Google Scholar

    [16]

    Zhang Y 2016 Ph. D. Dissertation (American: University of New Mexico

    [17]

    Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021 J. Plasma Phys. 87 905870102Google Scholar

    [18]

    Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018 J. Plasma Phys. 84 905840114Google Scholar

    [19]

    Qi L W, Song J, Zhao C X, Bai X, D Zhao F T, Yan H J, Ren C S, Wang D Z 2020 Phys. Plasmas 27 122506Google Scholar

    [20]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201 [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201]Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [21]

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202 [余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202]Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [22]

    Guo H S, Yang L J, Liu S 2020 Nucl. Fusion Plasma Phys. 40 86

    [23]

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203 [赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203]Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [24]

    Romero-Talamás C A, Bellan P M, Hsu S C 2004 Rev. Sci. Instrum. 75 2664Google Scholar

    [25]

    Taylor J B 1986 Rev. Mod. Phys. 58 741Google Scholar

    [26]

    Schaffer M J 1987 Phys. Fluids 30 160Google Scholar

    [27]

    Jarboe T R 1989 Fusion Techn. 15 7Google Scholar

    [28]

    Solomon M https://works.swarthmore.edu/theses/951/ [2024-6-2]

  • 图 1  磁化同轴枪放电实验装置图

    Fig. 1.  Schematic of the magnetized coaxial gun device.

    图 2  磁化同轴枪典型放电波形

    Fig. 2.  Typical electrical signals of discharge in the magnetized coaxial gun.

    图 3  典型高速相机图像序列: 球马克模式、扩散模式以及射流模式

    Fig. 3.  Typical high-speed camera image sequences: Spheromak mode, diffusion mode, and jet mode.

    图 4  ${\lambda _{{\text{gun}}}}$划分3个部分, 即扩散模式、球马克模式以及射流模式

    Fig. 4.  Three regimes of ${\lambda _{{\text{gun}}}}$: Diffusion mode, spheromak mode, and jet mode.

    图 5  不同模式下磁场信号波形 (a), (b) 球马克模式; (c), (d) 扩散模式; (e), (f) 射流模式

    Fig. 5.  Magnetic signal waveforms for different modes: (a), (b) The spheromak mode, (c), (d) the diffusion mode; (e), (f) the jet mode.

    图 6  轴向磁场与环向磁场拟合结果

    Fig. 6.  Fitting results of axial and azimuthal magnetic fields.

    图 7  不同模式下的高速相机图像 (a) 球马克模式; (b) 扩散模式; (c) 射流模式1 (${{\varPsi }}$ = 1.42 mWb); (d) 射流模式2 (${{\varPsi }}$ = 0 mWb)

    Fig. 7.  High-speed camera photographs under different regions: (a) Spheromak region; (b) diffusion region; (c) jet region 1 (${{\varPsi }}$ = 1.42 mWb); (d) jet region 2 (${{\varPsi }}$ = 0 mWb).

    图 8  不同模式下等离子体旋转速度

    Fig. 8.  Plasma rotation velocities in different modes.

    图 9  MATLAB处理后的伪彩图 (a) 球马克模式; (b) 扩散模式; (c) 射流模式1 (${{\varPsi }}$ = 1.42 mWb); (d) 射流模式2 (${{\varPsi }}$ = 0 mWb)

    Fig. 9.  Pseudo-color images: (a) Spheromak region; (b) diffusion region; (c) jet region 1 (${{\varPsi }}$ = 1.42 mWb); (d) jet region 2 (${{\varPsi }}$ = 0 mWb).

    表 1  不同模式下等离子体磁场特征

    Table 1.  Magnetic field characteristics of plasma in different modes.

    模式 磁场特征(沿径向$r$变化) 磁场信号维持时间
    $t /{\text{μs}}$
    球马克模式 ${{\boldsymbol{B}}_z}$中间大, 两边小, ${{\boldsymbol{B}}_\theta }$中间小, 两边大, 方向相反, 能够与贝塞尔函数拟合$\lambda \approx 42.6\;{{\text{m}}^{ - 1}}$ 10
    扩散模式 ${{\boldsymbol{B}}_z}$中间大, 两边小, ${{\boldsymbol{B}}_\theta }$中间不是最小, 方向相反. 两者拟合的贝塞尔函数$ \lambda $不相等 7—8
    射流模式 ${{\boldsymbol{B}}_z}$和${{\boldsymbol{B}}_\theta }$出现尖峰信号, 尤其${{\boldsymbol{B}}_\theta }$出现方向相反的尖峰信号, 贝塞尔函数无法成功拟合 16
    下载: 导出CSV

    表 2  不同模式下的运动特征

    Table 2.  Dynamic characteristics in different regions.

    模式 环向运动特征 轴向运动特征 示意图
    球马克模式 旋转速度逐渐增大, 最终均匀弥漫在
    内外电极之间
    形成亮区团块, 随后缓慢
    扩张并伴随旋转
    扩散模式
    旋转速度较大并持续增加, 最终均匀
    弥漫在内外电极之间
    等离子体快速向四周扩散, 呈现
    整体弥散分布类似于“吹破的泡泡”
    射流模式 旋转速度较小, 局部出现螺旋丝状
    结构, 磁场减小时旋转进一步减弱
    出现上下摆动, 磁场减小时
    向中心聚集, 形成射流柱
    下载: 导出CSV
  • [1]

    漆亮文 2022 博士学位论文(大连: 大连理工大学)

    Qi L W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [2]

    Dong Q L, Kong D F, Wu X H, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W Z, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Bai W, Yang D Z, Wen F, Zi P F, Li L, Hu G H, Zhang S B, Zhuang G 2022 Plasma Sci. Techn. 24 025103Google Scholar

    [3]

    Dong Q L, Zhang J, Lan T, Xiao C J, Zhuang G, Chen C, Zhou Y K, Wu J, Long T, Nie L, Lu P C, Wang T X, Wu J R, Deng P, Wang X K, Bai Z Q, Huang Y H, Li J, Xue L, Yolbarsop A, Mao W Z, Zhou C, Liu A, Wu Z W, Xie J L, Ding W X, Liu W D, Chen W, Zhong W L, Xu M, Duan X R 2024 Plasma Sci. Techn. 26 075102Google Scholar

    [4]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instruments 87 053512Google Scholar

    [5]

    Lan T, Chen C, Xiao C J, Ding W X, Wu J, Mao W Z, Zhang S, Kong D F, Zhang S B, Wu Z W, Dong Q L, Zhou Y K, Xu H Q, Wu J R, Wei Z A, Wen X H, Wang H, Zhou C, Liu A D, Li H, Xie J L, Liu W D, Zhuang G 2024 Plasma Sci. Techn. 26 105102Google Scholar

    [6]

    Tan M S, Ye Y, Kong D F, Dong Q L, Zhao Z H, Li Y H, Li B, Wen F, Huang Y Q, Tang L H, Li T Q, Zi Z, Zhong F B, Pei M X, Liu X Q, Zhang X H, Zhang S B 2024 Fusion Eng. Design 205 114559Google Scholar

    [7]

    Moser A L, Bellan P M 2012 Nature 482 379Google Scholar

    [8]

    Bellan P M 2018 Journal of Plasma Physics 84 755840501Google Scholar

    [9]

    Bellan P M 2018 Plasma Physics and Controlled Fusion 60 019501Google Scholar

    [10]

    Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024 Systems Engineering and Electronics 46 262

    [11]

    Cheng J, Tang H B, York T M 2014 Physics of Plasmas 21 063501Google Scholar

    [12]

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202 [赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真 2021 物理学报 70 205202]Google Scholar

    Zhao F T, Song J, Zhang J S, Qi L W, Zhao C X, Wang D Z 2021 Acta Phys. Sin. 70 205202Google Scholar

    [13]

    Geddes C G R, Kornack T W, Brown M R 1998 Phys. Plasmas 5 1027Google Scholar

    [14]

    Yee J, Bellan P M 2000 Phys. Plasmas 7 3625Google Scholar

    [15]

    Hsu S C, Bellan P M 2005 Phys. Plasmas 12 032103Google Scholar

    [16]

    Zhang Y 2016 Ph. D. Dissertation (American: University of New Mexico

    [17]

    Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021 J. Plasma Phys. 87 905870102Google Scholar

    [18]

    Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018 J. Plasma Phys. 84 905840114Google Scholar

    [19]

    Qi L W, Song J, Zhao C X, Bai X, D Zhao F T, Yan H J, Ren C S, Wang D Z 2020 Phys. Plasmas 27 122506Google Scholar

    [20]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201 [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201]Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [21]

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202 [余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202]Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [22]

    Guo H S, Yang L J, Liu S 2020 Nucl. Fusion Plasma Phys. 40 86

    [23]

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203 [赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203]Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [24]

    Romero-Talamás C A, Bellan P M, Hsu S C 2004 Rev. Sci. Instrum. 75 2664Google Scholar

    [25]

    Taylor J B 1986 Rev. Mod. Phys. 58 741Google Scholar

    [26]

    Schaffer M J 1987 Phys. Fluids 30 160Google Scholar

    [27]

    Jarboe T R 1989 Fusion Techn. 15 7Google Scholar

    [28]

    Solomon M https://works.swarthmore.edu/theses/951/ [2024-6-2]

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [4] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响. 物理学报, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [5] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [6] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [7] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [8] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测. 物理学报, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [9] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究. 物理学报, 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [10] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [11] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [12] 邹丹旦, 杨维紘. 双流体等离子体模型的动力学可容变分. 物理学报, 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [13] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述. 物理学报, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [14] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [15] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究. 物理学报, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [16] 冯士德, 冯涛. Biot-Savart流体力学理论与索马里低空急流形成机理的研究. 物理学报, 2011, 60(2): 029202. doi: 10.7498/aps.60.029202
    [17] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [19] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性. 物理学报, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] 李富斌. 由微观随机动力学导出非平衡稳定态的长程相关性(Ⅰ)——用随机点阵气模型构造出宏观涨落流体力学理论. 物理学报, 1990, 39(3): 381-390. doi: 10.7498/aps.39.381
计量
  • 文章访问数:  452
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-05
  • 修回日期:  2025-06-22
  • 上网日期:  2025-07-01
  • 刊出日期:  2025-09-05

/

返回文章
返回