搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化同轴枪等离子体动力学特征研究

王震 刘金垚 张津硕 姜楠 闫慧杰 宋健

引用本文:
Citation:

磁化同轴枪等离子体动力学特征研究

王震, 刘金垚, 张津硕, 姜楠, 闫慧杰, 宋健

Investigation of Plasma Dynamics in a Magnetized Coaxial Plasma Gun

Wang Zhen, Liu Jin-Yao, Zhang Jin-shuo, Jiang Nan, Yan Hui-jie, Song jian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 磁化同轴枪是一种高效的等离子体注入装置,在核聚变注料、宇宙射流模拟和磁重联研究中具有重要的应用价值。本文基于高速成像和磁场测量技术,观察到球马克、扩散与射流三种磁化同轴枪放电过程中的典型模式,并系统研究了不同模式下等离子体的动力学特征。其后结合理想磁流体力学(MHD)理论,对不同模式下等离子体的磁场位形、旋转行为与轴向运动的内在机制进行了深入分析。结果表明,球马克模式下,等离子体达到泰勒弛豫状态,实现整体匀速旋转,形成稳定的紧凑环(CT)结构;在扩散模式中,偏置磁场较强导致旋转速度较大,离心力增强,进而引发剧烈的径向扩散;射流模式中,由于偏置磁场较弱,等离子体聚集于内电极头部,呈现 箍缩 效应,最终形成具有轴向不稳定性的射流柱结构。该研究结果不仅加深了对磁化同轴枪放电物理过程的认识,也为数值模拟与高效等离子体源的设计提供了一定的实验基础和理论支持。
    The magnetized coaxial gun is an efficient plasma injection device with significant applications in fusion fueling, astrophysical jet simulation, and magnetic reconnection studies. In this work, three typical discharge regions—spheromak region, diffusive region, and jet region—were observed using high-speed imaging and magnetic field measurements. The dynamic characteristics of the plasma in each region were systematically investigated. Based on ideal magnetohydrodynamic (MHD) theory, the magnetic field configurations, rotational behavior, and axial motion mechanisms of the plasma in different regions were carefully analyzed. The results show that in the spheromak region, the plasma reaches a Taylor-relaxed state, exhibits uniform rotation, and forms a stable compact torus (CT) structure. In the diffusive region, a relatively strong bias magnetic field leads to faster rotation, enhanced centrifugal force, and consequently, intense radial diffusion. In the jet region, due to the weaker bias field, the plasma accumulates at the tip of the inner electrode, exhibiting a clear pinch effect and forming a jet with axial instability. These findings not only deepen the understanding of the discharge physics of magnetized coaxial guns but also provide valuable experimental and theoretical support for numerical simulations and the development of efficient plasma sources.
  • [1]

    Qi L W 2022Ph. D. Dissertation (Dalian University of Technology) (in Chinese) [漆亮文2022博士学位论文(大连:大连理工大学)]

    [2]

    Dong Q, Kong D, Wu X, Ye Y, Yang K, Lan T, Chen C, Wu J, Zhang S, Mao W, Zhao Z, Meng F, Zhang X, Huang Y, Bai W, Yang D, Wen F, Zi P, Li L, Hu G, Zhang S, Zhuang G 2022Plasma Science and Technology 24025103

    [3]

    Dong Q, Zhang J, Lan T, Xiao C, Zhuang G, Chen C, Zhou Y, Wu J, Long T, Nie L, Lu P, Wang T, Wu J, Deng P, Wang X, Bai Z, Huang Y, Li J, Xue L, Yolbarsop A, Mao W, Zhou C, Liu A, Wu Z, Xie J, Ding W, Liu W, Chen W, Zhong W, Xu M, Duan X 2024Plasma Science and Technology 26075102

    [4]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016Review of Scientific Instruments 87053512

    [5]

    Lan T, Chen C, Xiao C, Ding W, Wu J, Mao W, Zhang S, Kong D, Zhang S, Wu Z, Dong Q, Zhou Y, Xu H, Wu J, Wei Z, Wen X, Wang H, Zhou C, Liu A, Li H, Xie J, Liu W, Zhuang G 2024Plasma Science and Technology 26105102

    [6]

    Tan M, Ye Y, Kong D, Dong Q, Zhao Z, Li Y, Li B, Wen F, Huang Y, Tang L, Li T, Zi Z, Zhong F, Pei M, Liu X, Zhang X, Zhang S 2024Fusion Engineering and Design 205114559

    [7]

    Moser A L, Bellan P M 2012Nature 482 379

    [8]

    Bellan P M 2018Journal of Plasma Physics 84755840501

    [9]

    Bellan P M 2018Plasma Physics and Controlled Fusion 60019501

    [10]

    Zhao H L, Zhang Y W, Yang L P, Huang H, Ma T 2024Systems Engineering and Electronics 46262

    [11]

    Cheng J, Tang H-B, York T M 2014Physics of Plasmas 21063501

    [12]

    Zhao F-T, Song J, Zhang J-S, Qi L-W, Zhao C-X, Wang D-Z 2021Acta Physica Sinica 70205202[赵繁涛,宋健,张津硕,漆亮文,赵崇霄,王德真2021物理学报70205202]

    [13]

    Geddes C G R, Kornack T W, Brown M R 1998Physics of Plasmas 5 1027

    [14]

    Yee J, Bellan P M 2000Physics of Plasmas 7 3625

    [15]

    Hsu S C, Bellan P M 2005Physics of Plasmas 12 032103

    [16]

    (in American)

    [17]

    Byvank T, Endrizzi D A, Forest C B, Langendorf S J, McCollam K J, Hsu S C 2021Journal of Plasma Physics 87905870102

    [18]

    Kaur M, Barbano L J, Suen-Lewis E M, Shrock J E, Light A D, Schaffner D A, Brown M B, Woodruff S, Meyer T 2018Journal of Plasma Physics 84905840114

    [19]

    Qi L, Song J, Zhao C, Bai X, Zhao F, Yan H, Ren C, Wang D 2020Physics of Plasmas 27122506

    [20]

    Zhang J-L, Yang L, Yan H-J, Hua Y, Ren C-S 2015Acta Physica Sinica 64075201[张俊龙,杨亮,闫慧杰,滑跃,任春生2015物理学报64075201]

    [21]

    Yu X, Qi L-W, Zhao C-X, Ren C-S 2020Acta Physica Sinica 69035202[余鑫,漆亮文,赵崇霄,任春生2020物理学报69035202]

    [22]

    Guo H S, Yang L J, Liu S 2020Nuclear Fusion and Plasma Physics 40 86

    [23]

    Zhao C-X, Qi L-W, Yan H-J, Wang T-T, Ren C-S 2019Acta Physica Sinica 68105203[赵崇霄,漆亮文,闫慧杰,王婷婷,任春生2019物理学报68105203]

    [24]

    Romero-Talamás C A, Bellan P M, Hsu S C 2004Review of Scientific Instruments 75 2664

    [25]

    Taylor J B 1986Reviews of Modern Physics 58 741

    [26]

    Schaffer M J 1987The Physics of Fluids 30 160

    [27]

    Jarboe T R 1989Fusion Technology 15 7

    [28]

    Solomon M "Large Sample Statistical Study of Three-Dimensional Magnetic Reconnect" by Solomon Murdock,'24

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, doi: 10.7498/aps.73.20240760
    [2] 马瑞瑞, 陈骝, 仇志勇. 反磁剪切托卡马克等离子体中低频剪切阿尔芬波的理论研究. 物理学报, doi: 10.7498/aps.72.20230255
    [3] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, doi: 10.7498/aps.72.20230991
    [4] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, doi: 10.7498/aps.72.20230463
    [5] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响. 物理学报, doi: 10.7498/aps.70.20201724
    [6] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, doi: 10.7498/aps.70.20210709
    [7] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, doi: 10.7498/aps.69.20191321
    [8] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, doi: 10.7498/aps.68.20190218
    [9] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究. 物理学报, doi: 10.7498/aps.68.20181832
    [10] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究. 物理学报, doi: 10.7498/aps.66.055203
    [11] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, doi: 10.7498/aps.64.075201
    [12] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, doi: 10.7498/aps.61.145201
    [13] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, doi: 10.7498/aps.57.5111
    [14] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析. 物理学报, doi: 10.7498/aps.55.1283
    [15] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究. 物理学报, doi: 10.7498/aps.55.1301
    [16] 吴坚强, 刘盛纲, 莫元龙. 未磁化等离子体介质切连科夫脉塞的线性理论. 物理学报, doi: 10.7498/aps.46.324
    [17] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性. 物理学报, doi: 10.7498/aps.43.1466
    [18] 王龙, 罗耀全, 李赞良, 王文书, 杨思泽, 李文莱, 戚霞枝, 赵华. 托卡马克微波预电离等离子体. 物理学报, doi: 10.7498/aps.38.714
    [19] 王中天. 非圆截面等离子体MHD不稳定性的研究. 物理学报, doi: 10.7498/aps.30.573
    [20] 蔡诗东, 吴京生. 磁化等离子体的纵向电阻率. 物理学报, doi: 10.7498/aps.29.225
计量
  • 文章访问数:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回