搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑移铁电VTe2多铁隧道结的输运性质研究

朱小龙 刘雨林

引用本文:
Citation:

基于滑移铁电VTe2多铁隧道结的输运性质研究

朱小龙, 刘雨林

Transport properties of multiferroic tunnel junctions based on sliding ferroelectric VTe2

ZHU Xiaolong, LIU Yuling
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文利用基于密度泛函理论的第一性原理计算方法,研究了以双层VTe2为滑移铁电势垒层,Fe3GaTe2/Fe3GeTe2为左右磁性电极的范德瓦尔斯多铁隧道结的自旋相关输运特性。研究结果发现,通过控制Fe3GaTe2/双层VTe2/Fe3GeTe2范德瓦尔斯型多铁隧道结中铁电势垒的极化方向和铁磁电极的磁化方向,可以实现多个非易失性电阻态。具体而言,当双层铁电材料VTe2发生相对滑移时,铁电势垒的极化从左取向(P←)转变为右取向(P→),费米能级处的隧穿磁电阻(TMR)比从7.27×105%增加到1.01×106%。当铁磁电极的磁化方向从平行排列(M↑↑)变为反平行排列(M↑↓)时,隧穿电阻(TER)比几乎成倍增加。此外,在构建的四种多铁隧道结非易失性电阻态下都观察到了接近100%的自旋过滤效率。本文研究结果表明,构建的Fe3GaTe2/双层VTe2/Fe3GeTe2多铁隧道结在多状态非易失性存储器和自旋过滤器方面具有潜在的应用前景,为多功能电子器件的开发提供了一个有前景的平台。
    Multiferroic tunnel junctions (MFTJs)—characterized by a ferroelectric barrier encapsulated between two ferromagnetic electrodes—represent a highly promising platform for next-generation nonvolatile memory applications. The recent discovery of intrinsic ferromagnetism and ferroelectricity in van der Waals (vdW) materials further provides a compelling material foundation for constructing multifunctional MFTJs based on vdW heterostructures. In this paper, towards high-performance and multifunctional van der Waals multiferroic tunnel junctions (vdW-MFTJs) devices, we investigate the spin-dependent transport properties of vdW-MFTJs with a bilayer VTe2 sliding ferroelectric barrier and Fe3GaTe2/Fe3GeTe2 magnetic electrodes using first-principles calculations based on density functional theory (DFT). Our results reveal that multiple non-volatile resistance states can be achieved by controlling the polarization direction of the ferroelectric barrier and the magnetization configuration of the ferromagnetic electrodes in the Fe3GaTe2/bilayer VTe2/Fe3GeTe2 MFTJs. Specifically, when the double-layer ferroelectric material VTe2 undergoes relative interlayer slippage, the polarization of the ferroelectric barrier switches from a left-oriented state ( P←) to a right-oriented state ( P→). Consequently, the tunneling magnetoresistance (TMR) ratio at the Fermi level increases from 7.27 × 105% to 1.01 × 106%. Moreover, switching the magnetization configuration of the ferromagnetic electrodes from parallel alignment (M↑↑) to antiparallel alignment (M↑↓) leads to an almost twofold increase in the tunneling electroresistance (TER) ratio. Furthermore, nearly 100% spin filtering effciency is observed across all four non-volatile resistance states of the MFTJs. These findings demonstrate that the engineered Fe3GaTe2/bilayer VTe2/Fe3GeTe2 MFTJs holds promising potential for applications in multi-state non-volatile memory and spin filters, providing a versatile platform for developing multifunctional electronic devices.
  • [1]

    Theis T N, Wong H S P 2017 Computing in science & engineering 1941

    [2]

    Lundstrom M S, Alam M A 2022 Science 378722

    [3]

    Wong H S P, Salahuddin S 2015 Nature nanotechnology 10191

    [4]

    Lanigan-Atkins T, He X, Krogstad M, Pajerowski D, Abernathy D, Xu G N, Xu Z, Chung D Y, Kanatzidis M, Rosenkranz S, et al. 2021 Nature materials 20977

    [5]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature nanotechnology 5266

    [6]

    Apalkov D, Khvalkovskiy A, Watts S, Nikitin V, Tang X, Lottis D, Moon K, Luo X, Chen E, Ong A, et al. 2013 ACM Journal on Emerging Technologies in Computing Systems (JETC) 91

    [7]

    Wadley P, Howells B, Železnỳ J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S, et al. 2016 Science 351587

    [8]

    Manchon A, Železnỳ J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Reviews of Modern Physics 91035004

    [9]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, et al. 2020 Nature Electronics 3446

    [10]

    Velev J P, Duan C G, Burton J, Smogunov A, Niranjan M K, Tosatti E, Jaswal S, Tsymbal E Y 2009 Nano letters 9427

    [11]

    Barrionuevo D, Zhang L, Ortega N, Sokolov A, Kumar A, Misra P, Scott J, Katiyar R 2014 Nanotechnology 25495203

    [12]

    Merodio P, Kalitsov A, Chshiev M, Velev J 2016 Physical Review Applied 5064006

    [13]

    Manipatruni S, Nikonov D E, Lin C C, Gosavi T A, Liu H, Prasad B, Huang Y L, Bonturim E, Ramesh R, Young I A 2019 Nature 56535

    [14]

    Guo X H, Zhu L, Cao Z L, Yao K L 2024 Physical Chemistry Chemical Physics 263531

    [15]

    ZHANG J, YU P 2013 Journal of the Chinese Ceramic Society 41905

    [16]

    Yin Y, Li Q 2017 Journal of Materiomics 3245

    [17]

    Zhang Y, Li X, Sheng J, Yu S, Zhang J, Su Y 2023 Applied Physics Letters 123

    [18]

    Lei Y, Xu Y, Wang M, Zhu G, Jin Z 2021 Small 172005495

    [19]

    Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, et al. 2018 Science advances 4 eaar7720

    [20]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, et al. 2016 Nature communications 71

    [21]

    Feng Y, Han J, Zhang K, Lin X, Gao G, Yang Q, Meng S 2024 Physical Review B 109085433

    [22]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, et al. 2018 Nature 56394

    [23]

    Ke J, Yang M, Xia W, Zhu H, Liu C, Chen R, Dong C, Liu W, Shi M, Guo Y, et al. 2020 Journal of Physics: Condensed Matter 32405805

    [24]

    Huang M, Ma Z, Wang S, Li S, Li M, Xiang J, Liu P, Hu G, Zhang Z, Sun Z, et al. 20212D Materials 8031003

    [25]

    Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y, Ji W 2019 Physical Review B 99144401

    [26]

    Su Y, Li X, Zhu M, Zhang J, You L, Tsymbal E Y 2020 Nano Letters 21175

    [27]

    Yan Z, Li Z, Han Y, Qiao Z, Xu X 2022 Physical Review B 105075423

    [28]

    Chen Y, Tang Z, Dai M, Luo X, Zheng Y 2022 Nanoscale 148849

    [29]

    Wu M 2021 Nature Reviews Physics 3726

    [30]

    Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, et al. 2022 Physical Review Letters 128067601

    [31]

    Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 3721458

    [32]

    Wang C, An Y 2021 Applied Surface Science 538148098

    [33]

    Fuh H R, Chang C R, Wang Y K, Evans R F, Chantrell R W, Jeng H T 2016 Scientific reports 632625

    [34]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, et al. 2018 Nature materials 17778

    [35]

    Taylor J, Guo H, Wang J 2001 Physical Review B 63245407

    [36]

    Blöchl P E 1994 Physical review B 5017953

    [37]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Physical review B 466671

    [38]

    Monkhorst H J, Pack J D 1976 Physical review B 135188

    [39]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nature materials 3868

    [40]

    Tao L, Wang J 2016 Applied Physics Letters 108

    [41]

    Ma J, Luo X, Zheng Y 2024 npj Computational Materials 10102

  • [1] 邓小松, 张志勇, 康宁. 基于一维电子体系的超导复合器件和量子输运研究. 物理学报, doi: 10.7498/aps.74.20241672
    [2] 孔俊然, 毛铓, 刘焕, 王晨. 非平衡各向异性Dicke模型中的量子热能输运. 物理学报, doi: 10.7498/aps.74.20251007
    [3] 周文, 彭淑平, 邓淑玲, 伍丹, 范志强, 张小姣. 非对称双氢钝化锯齿型SiC纳米带复合功能自旋器件设计与输运. 物理学报, doi: 10.7498/aps.74.20250553
    [4] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, doi: 10.7498/aps.72.20230502
    [5] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, doi: 10.7498/aps.72.20222159
    [6] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论. 物理学报, doi: 10.7498/aps.72.20222470
    [7] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, doi: 10.7498/aps.71.20220029
    [8] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, doi: 10.7498/aps.71.20221304
    [9] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, doi: 10.7498/aps.71.20212193
    [10] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, doi: 10.7498/aps.69.20200237
    [11] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, doi: 10.7498/aps.69.20201028
    [12] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, doi: 10.7498/aps.68.20190095
    [13] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, doi: 10.7498/aps.68.20191072
    [14] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172221
    [15] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, doi: 10.7498/aps.60.127201
    [16] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [17] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, doi: 10.7498/aps.58.4162
    [18] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
    [19] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, doi: 10.7498/aps.57.5899
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  119
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回