-
采用聚类连通法, 提取高速槽道湍流中强流向速度脉动与强温度脉动对应的拟序结构. 依据空间位置, 结构被划分为壁面附着型与壁面分离型. 部分壁面附着结构在尺度上呈现自相似性, 符合Townsend (1976)附着涡假设, 据此进一步细分为矮结构、自相似结构和高结构. 条件平均结果表明, 流向雷诺正应力和温度脉动在对数区满足对数率, 这一现象同样与附着涡假设相符合; 同时, 附着结构内速度脉动与温度脉动间仍保持强雷诺比拟关系. 基于RD (Renard-Deck)分解恒等式的分析显示, 低速高结构主导了壁面摩阻和热流的生成, 而高温高结构则在法向热流传输中起主要作用.In this study, a clustering method is used to extract the coherent structures associated with intense streamwise velocity fluctuations and temperature fluctuations in high-speed turbulent channel flow. Based on their spatial locations, these structures are categorized into wall-attached type and wall-detached type. A subset of the wall-attached structures exhibits self-similarity in scale, consistent with Townsend (1976)’s attached eddy hypothesis, and these structures are further classified as squat structure, self-similar structure, and tall structure. Conditional averaging results indicate that the streamwise Reynolds normal stress and the intensity of temperature fluctuations follow a logarithmic law in the logarithmic layer, a phenomenon that aligns with the attached eddy hypothesis; meanwhile, the strong Reynolds analogy relationship between velocity and temperature fluctuations remains valid within these attached structures. Analysis based on the RD (Renard-Deck) identity decomposition reveals that tall structures related to low streamwise momentum mainly control the generation of wall friction and heat flux, while tall structures related to high-temperature events play a main role in the of wall-normal heat flux transfer.
-
Keywords:
- high-speed turbulent channel flows /
- clustering method /
- coherent structures /
- self-similarity /
- wall shear stress and wall heat flux.








下载: