-
Quantum key distribution (QKD) relies on the fundamental principles of quantum mechanics and can theoretically achieve unconditionally secure communication that is provable by information theory. Quantum random number generators, on the other hand, utilize the inherent randomness of quantum phenomena and are capable of generating a truly random entropy source that is unpredictable, unbiased and unrepeatable. These two technologies are crucial for building highly trustworthy and secure communication systems resistant to quantum attacks. However, their large-scale deployment still faces challenges such as system performance optimization, cost control and scale production. Relying on wafer-level fabrication platforms and micro-nanometer processing, integrated photonics technology integrates the core devices of traditional QKD systems (e.g., light source, modulator, and detector) in a single chip at high density. It significantly improves the miniaturization, operational stability and cost-effectiveness of the system, and enhances the intrinsic security, and becomes a key enabling platform to drive QKD and QRNG from laboratory to engineering applications. In this paper, we systematically review the recent breakthroughs of photonic integrated QKD based on different material platforms (SOI/InP/TFLN/Si3N4) in terms of core metrics, such as transmission distance and key rate, as well as the significant breakthroughs of integrated QRNG in terms of random number generation rate and system integration. Finally, the future development direction of this field is discussed and outlooked from the four dimensions of practical security of QKD systems, on-chip implementation of cutting-edge QKD protocols, practical fully-integrated QKD systems, and synergistic optimization of high performance and high integration of integrated QRNG. -
图 1 集成DV-QKD系统示意图 (a) 基于硅光子平台的“偏振-路径转换”芯片结构示意图[46]; (b) 基于多像素SPSPD的高速QKD系统架构图[10]; (c) 2.5 GHz集成QKD系统架构图[48]; (d) 混合集成收发芯片的实验装置图[45]
Fig. 1. Schematic diagram of integrated DV-QKD systems: (a) “Polarization-path conversion” based on silicon photonics platform[46]; (b) architecture diagram of high-speed QKD system based on multi-pixel SPSPD[10]; (c) 2.5 GHz integrated QKD system architecture diagram[48]; (d) experimental setup diagram of hybrid integrated transceiver chip[45].
图 3 集成CV-QKD系统示意图 (a) 基于硅基集成的CV-QKD接收平台[52]; (b) 基于硅基集成的CV-QKD接收器芯片[53]; (c) 基于硅基集成的CV-QKD接收器结构图及该CV-QKD系统[55]; (d) 基于Ⅲ-Ⅴ/Si3N4的片上激光器[51]
Fig. 3. Schematic diagrams of integrated CV-QKD systems: (a) CV-QKD receiving platform based on silicon-based integration[52]; (b) CV-QKD receiver chip based on silicon-based integration[53]; (c) schematic diagram of the CV-QKD receiver based on silicon-based integration and the CV-QKD system[55]; (d) Ⅲ-Ⅴ/Si3N4-based on-chip lasers[51].
图 4 集成QRNG系统示例 (a) 基于硅基集成芯片的完全可信QRNG系统[66]; (b) 基于InP光学平台的集成QRNG系统[26]; (c) 基于自制零差检测器的实验系统[64]; (d) 基于硅基集成芯片的SI-QRNG系统[68]
Fig. 4. Examples of integrated quantum random number generator systems: (a) a fully trusted QRNG system based on silicon-based integrated chips[66]; (b) an integrated QRNG system based on an InP optical platform[26]; (c) experimental systems based on self-made aberration detectors[64]; (d) SI-QRNG system based on silicon-based integrated chips[68].
表 1 集成光量子平台的比较
Table 1. Comparison of integrated optical quantum platforms.
对比维度 SOI InP TFLN Si3N4 折射率
(1550 nm)~3.48 ~3.2 ~2.2 ~2.0 透明窗口
/μm1.1—8.0 0.9—1.7 0.4—5.0 0.25—6.00 传输损耗 ★★★ ★★ ★★★★ ★★★★★ 工艺
成熟度★★★★★ ★★★ ★★ ★★★ 光源 ★★★ ★★★★★ ★★★ ★ 探测器 ★★★ ★★★★ ★★★ ★★★ 调制器 ★★★ ★★★★ ★★★★★ ★★ 表 2 基于不同平台集成DV-QKD系统
Table 2. Integrate DV-QKD system based on different platforms.
文献 工艺 器件 编码方式 协议 重复频率
/MHz传输损耗
/dB平均速率
/kbps光源 编码 解调 探测 [43] SI × √ × × 偏振编码 BB84 312.5 20a 42.7 [44] Si3N4 √ √ √ √ 时间戳-相位编码 BB84 3350 10 12170 [45] Si3N4/InP × √ √ × 时间戳-相位编码 BB84 1000 9.3 2370 [10] SI √ √ × × 偏振编码 BB84 2500 2.2 115800 [46] SI × √ √ × 偏振编码 BB84 50 18.857 0.24 [47] SI × √ √ × 偏振编码 BB84 50 28.992 0.866 [48] SI √ √ √ × 时间戳-相位编码 BB84 2500 39.5 9.4 [49] TFLN × √ √ × 时间戳-相位编码 BB84 2500 4.1 11000 [50] TFLN × √ √ × 时间戳-相位编码/相位编码 BB84 10 6.43 0.77 表 3 基于不同平台集成的CV-QKD系统
Table 3. Integrate CV-QKD system based on different platforms.
文献 工艺 器件 编码方式 协议 重复频率/ MHz 传输损耗/dB 平均速率/kbps 光源 编码 解调 探测 [51] InP/Si3N4 √ × × √ 相位编码 GG02 250 10a 750 [52] SI × × √ × 相位编码 GG02 1000 5.72a 1380 [53] SI × × √ √ 相位编码 GG02 100 4.6 220 [54] InP √ √ × × 相位编码 GG02 16 2.04 78 [55] SI × √ √ √ 相位编码 DM CV-QKD 10000 2a 351000 [56] SI × √ √ √ 相位编码 DM CV-QKD 16000 4a 246000 [57] SI × √ √ √ 偏振编码/相位编码 DM CV-QKD 20000 1.98 1.213×106 表 4 基于不同平台的集成QRNG
Table 4. Integrated QRNG based on different platforms.
文献 工艺 熵源 设备信任 探测 采样方式 生成速率/Mbit/s [64] SI 真空噪声 测量设备无关 零差探测 FPGA(实时) — [65] InP 自发辐射相位噪声 完全可信 光电探测 示波器(离线) 6110 [66] SI 真空噪声 完全可信 零差探测 示波器(离线) 1×105 [67] SI 真空态涨落 源设备无关 零差探测 示波器(离线) 146.2 [68] SI 光子偏振态 源设备无关 单光子探测 单光子探测器+
时间数字转换器(实时)4.04 [69] SiO2 真空噪声 完全可信 零差探测 FPGA(实时) 5×104 [70] SI/InP 真空噪声 完全可信 零差探测 FPGA(实时) 1.02 [26] InP 真空态涨落 完全可信 光电探测 FPGA(实时) 2000 [71] SI 真空噪声 源设备无关 零差探测 FPGA(实时) 20000 [25] SI 光子偏振态 源设备无关 单光子探测 单光子探测器+
时间数字转换器(实时)9.49 [72] SI 真空态涨落 源设备无关 外差探测 示波器(离线) 20212 注: 表中所有基于不同平台集成的QRNG工作均采用了“Toeplitz Hashing”后处理技术. -
[1] Proctor T, Young K, Baczewski A D, Blume Kohout R 2025 Nat. Rev. Phys. 7 105
Google Scholar
[2] Fauseweh B 2024 Nat. Commun. 15 2123
Google Scholar
[3] Proctor T, Rudinger K, Young K, Nielsen E, Blume Kohout R 2022 Nat. Phys. 18 75
Google Scholar
[4] Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387
Google Scholar
[5] Fujisaki E, Okamoto T 1999 19th Annual International Cryptology Conference Santa Barbara, California, USA, August 15–19, 1999 p537
[6] Simmons G J 1979 ACM Comput. Surv. 11 305
Google Scholar
[7] Akter M S, Rodriguez C J, Shahriar H, Cuzzocrea A, Wu F 2023 IEEE International Conference on Big Data (BigData) Sorrento, Italy, December 15–18, 2023 p5408
[8] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10–12, 1984 p175
[9] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol 5 3
Google Scholar
[10] Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416
Google Scholar
[11] Li Y, Cai W Q, Ren J G, Wang C Z, Yang M, Zhang L, Wu H Y, Chang L, Wu J C, Jin B, Xue H J, Li X J, Liu H, Yu G W, Tao X Y, Chen T, Liu C F, Luo W B, Zhou J, Yong H L, Li Y H, Li F Z, Jiang C, Chen H Z, Wu C, Tong X H, Xie S J, Zhou F, Liu W Y, Ismail Y, Petruccione F, Liu N L, Li L, Xu F, Cao Y, Yin J, Shu R, Wang X B, Zhang Q, Wang J Y, Liao S K, Peng C Z, Pan J W 2025 Nature 640 47
Google Scholar
[12] Li W, Zhang L K, Lu Y C, Li Z P, Jiang C, Liu Y, Huang J, Li H, Wang Z, Wang X B, Zhang Q, You L X, Xu F H, Pan J W 2023 Phys. Rev. Lett. 130 250802
Google Scholar
[13] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801
Google Scholar
[14] Zhang L K, Li W, Pan J W, Lu Y C, Li W W, Li Z P, Huang Y Z, Ma X F, Xu F H, Pan J W 2025 Phys. Rev. X 15 021037
[15] Diamanti E, Lo H K, Qi B, Yuan Z L 2016 npj Quantum Inf. 2 16025
Google Scholar
[16] Liu Q, Huang Y M, Du Y Q, Zhao Z G, Geng M M, Zhang Z R, Wei K J 2022 Entropy 24 1334
Google Scholar
[17] Gabriel C, Wittmann C, Sych D, Dong R F, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711
Google Scholar
[18] Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105
Google Scholar
[19] Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675
Google Scholar
[20] Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820
Google Scholar
[21] Wayne M A, Kwiat P G 2010 Opt. Express 18 9351
Google Scholar
[22] Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105
Google Scholar
[23] Guo Y, Cai Q, Li P, Jia Z W, Xu B J, Zhang Q W, Zhang Y M, Zhang R N, Gao Z S, Shore K A, Wang Y C 2021 APL Photonics 6 066105
Google Scholar
[24] Wei S H, Yang J, Fan F, Huang W, Li D S, Xu B J 2017 Rev. Sci. Instrum. 88 123115
Google Scholar
[25] Du Y Q, Hua X, Zhao Z G, Sun X R, Zhang Z R, Xiao X, Wei K J 2025 Commun. Phys. 8 9
Google Scholar
[26] Marangon D G, Smith P R, Walk N, Paraïso T K, Dynes J F, Lovic V, Sanzaro M, Roger T, De Marco I, Lucamarini M, Yuan Z L, Shields A J 2024 Nat. Electron. 7 396
Google Scholar
[27] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012
Google Scholar
[28] Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002
Google Scholar
[29] Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Lightwave Technol. 39 4374
Google Scholar
[30] Chen X, Milosevic M M, Stanković S, Reynolds S, Bucio T D, Li K, Thomson D J, Gardes F, Reed G T 2018 Proc. IEEE 106 2101
Google Scholar
[31] Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photonics 4 518
Google Scholar
[32] Ogiso Y, Ozaki J, Ueda Y, Wakita H, Nagatani M, Yamazaki H, Nakamura M, Kobayashi T, Kanazawa S, Hashizume Y, Tanobe H, Nunoya N, Lda M, Miyamoto Y, Lshikawa M 2019 J. Lightwave Technol. 38 249
[33] Abellan C, Amaya W, Domenech D, Muñoz P, Capmany J, Longhi S, Mitchell M W, Pruneri V 2016 Optica 3 989
Google Scholar
[34] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L, Thompson M G 2017 Nat. Commun. 8 13984
Google Scholar
[35] Zhang M, Wang C, Kharel P, Zhu D, Lončar M 2021 Optica 8 652
Google Scholar
[36] Berikaa E, Alam M S, Li W J, Bernal S, Krueger B, Pittalà F, Plant D V 2023 IEEE Photon. Technol. Lett. 35 850
Google Scholar
[37] Lomonte E, Wolff M A, Beutel F, Ferrari S, Schuck C, Pernice W H P, Lenzini F 2021 Nat. Commun. 12 6847
Google Scholar
[38] Xiong W J, Wang G L, Li J F, Zhao C, Wang W W, Radamson H H 2021 J. Mater. Sci-Mater. El. 32 1
[39] Wilmart Q, El Dirani H, Tyler N, Fowler D, Malhouitre S, Garcia S, Casale M, Kerdiles S, Hassan K, Monat C, Letartre X, Kamel A, Pu M, Yvind K, Oxenløwe L K, Rabaud W, Sciancalepore C, Szelag B, Olivier S 2019 Appl. Sci. 9 255
Google Scholar
[40] Sacher W D, Huang Y, Lo G Q, Poon J K S 2015 J. Lightw. Technol. 33 901
Google Scholar
[41] Gyger S, Zichi J, Schweickert L, Elshaari A W, Steinhauer S, Covre da Silva S F, Rastelli A, Zwiller V, Jöns K D, Errando Herranz C 2021 Nat. Commun. 12 1408
Google Scholar
[42] Schuck C, Guo X, Fan L, Ma X, Poot M, Tang H X 2016 Nat. Commun. 7 10352
Google Scholar
[43] Zhu C X, Chen Z Y, Li Y, Wang X Z, Wang C Z, Zhu Y L, Liang F T, Cai W Q, Jin G, Liao S K, Peng C Z 2022 Phys. Rev. Appl. 17 064034
Google Scholar
[44] Beutel F, Brückerhoff Plückelmann F, Gehring H, Kovalyuk V, Zolotov P, Goltsman G, Pernice W H P 2022 Optica 9 1121
Google Scholar
[45] Dolphin J A, Paraïso T K, Du H, Woodward R I, Marangon D G, Shields A J 2023 npj Quantum Inf. 9 84
Google Scholar
[46] Du Y Q, Zhu X, Hua X, Zhao Z G, Hu X, Qian Y, Xiao X, Wei K J 2023 Chip 2 100039
Google Scholar
[47] Wei K J, Hu X, Du Y Q, Hua X, Zhao Z G, Chen Y, Huang C F, Xiao X 2023 Photon. Res. 11 1364
Google Scholar
[48] Sax R, Boaron A, Boso G, Atzeni S, Crespi A, Grünenfelder F, Rusca D, Al Saadi A, Bronzi D, Kupijai S 2023 Photon. Res. 11 1007
Google Scholar
[49] Lin Z H, Gao Y F, Zhou L, Yuan H H, Zhu Y T, Lin Z J, Zhang W, Huang Y D, Cai X L, Yuan Z L 2025 Opt. Quantum 3 195
Google Scholar
[50] Heo H, Woo M K, Park C H, Jang H S, Hwang H, Lee H, Seo M K, Kim S, Kwon H, Jung H, Han S W 2025 APL Photonics 10 031301
Google Scholar
[51] Li L, Wang T, Li X H, Huang P, Guo Y Y, Lu L J, Zhou L J, Zeng G H 2023 Photon. Res. 11 504
Google Scholar
[52] Bian Y M, Pan Y, Xu X S, Zhao L, Li Y, Huang W, Zhang L, Yu S, Zhang Y C, Xu B J 2024 Appl. Phys. Lett. 124 174001
Google Scholar
[53] Piétri Y, Trigo Vidarte L, Schiavon M, Vivien L, Grangier P, Rhouni A, Diamanti E 2024 Opt. Quantum 2 428
Google Scholar
[54] Aldama J, Sarmiento S, Vidarte L T, Etcheverry S, Grande I L, Castelvero L, Hinojosa A, Beckerwerth T, Piétri Y, Rhouni A 2024 arXiv: 2412.03208 [quant-ph]
[55] Hajomer A A, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197
Google Scholar
[56] Hajomer A A, Bomhals A, Bruynsteen C, Sidhique A, Derkach I, Andersen U L, Yin X, Gehring T 2025 arXiv: 2504.09308 [quant-ph]
[57] Ng S Q, Kanitschar F, Zhang G, Wang C 2025 arXiv: 2504.08298 [quant-ph]
[58] Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y S, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274
Google Scholar
[59] Bunandar D, Lentine A, Lee C, Cai H, Long C M, Boynton N, Martinez N, DeRose C, Chen C C, Grein M, Trotter D, Starbuck A, Pomerene A, Hamilton S, Wong F N C, Camacho R, Davids P, Urayama J, Englund D 2018 Phys. Rev. X 8 021009
[60] Cao L, Luo W, Wang Y X, Zou J, Yan R D, Cai H, Zhang Y, Hu X L, Jiang C, Fan W J, Zhou X Q, Dong B, Luo X S, Lo G Q, Wang Y X, Xu Z W, Sun S H, Wang X B, Hao Y L, Jin Y F, Kwong D L, Kwek L C, Liu A Q 2020 Phys. Rev. Appl. 14 011001
Google Scholar
[61] Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5 162
Google Scholar
[62] Zhang Y C, Chen Z Y, Chu B J, Zhou C, Wang X Y, Zhao Y J, Xu Y F, Xu C, Wang H J, Zheng Z Y, Huang Y D, Xu C C, Zhang X X, Shen T, Huang G, Zheng Y W, Fei Z X, Huang W N, Zhu M L, Huang L Y, Luo B, Yu S, Guo H 2020 Bull. Am. Phys. Soc. 65 1
[63] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839
Google Scholar
[64] Wang C, Primaatmaja I W, Ng H J, Haw J Y, Ho R, Zhang J R, Zhang G, Lim C 2023 Nat. Commun. 14 316
[65] Chrysostomidis T, Roumpos I, Outerelo D A, Troncoso Costas M, Moskalenko V, Garcia Escartin J C, Diaz Otero F J, Vyrsokinos K 2023 EPJ Quantum Technol. 10 5
Google Scholar
[66] Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330
Google Scholar
[67] Li L, Cai M L, Wang T, Tan Z C, Huang P, Wu K, Zeng G H 2024 Photon. Res. 12 1379
Google Scholar
[68] Zhao Z G, Hua X, Du Y Q, Xu C Y, Xie F, Zhang Z R, Xiao X, Wei K J 2024 Opt. Express 32 38793
Google Scholar
[69] Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209
Google Scholar
[70] Wang X Y, Zheng T, Jia Y X, Huang J, Zhu X Y, Shi Y Q, Wang N, Lu Z G, Zou J, Li Y M 2024 Photonics 11 468
Google Scholar
[71] Bian Y M, Yang J, Jiang H Y, Huang W, Su Q, Yu S, Zhang L, Zhang Y C, Xu B J 2025 Opt. Lett. 50 1216
Google Scholar
[72] Bertapelle T, Avesani M, Santamato A, Montanaro A, Chiesa M, Rotta D, Artiglia M, Sorianello V, Testa F, De Angelis G, Contestabile G, Vallone G, Romagnoli M, Villoresi P 2025 Opt. Quantum 3 111
Google Scholar
[73] Sun S H, Huang A Q 2022 Entropy 24 260
Google Scholar
[74] Chen Y, Huang C F, Chen Z H, He W J, Zhang C X, Sun S H, Wei K J 2022 Phys. Rev. A 106 022614
Google Scholar
[75] Zhang C, Hu X L, Jiang C, Chen J P, Liu Y, Zhang W J, Yu Z W, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 128 190503
Google Scholar
[76] Kang X, Ye P, Wang S, Zhang G W, Wang Z H, Chen J L, Yin Z Q, He D Y, Chen W, Fan Yuan G J, Guo G C, Han Z F 2025 Phys. Rev. Appl. 23 024014
Google Scholar
[77] Tan H, Li W, Zhang L K, Wei K J, Xu F H 2021 Phys. Rev. Appl. 15 064038
Google Scholar
[78] Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611
Google Scholar
[79] Ye P, Chen W, Wang Z H, Zhang G W, Ding Y Y, Huang G Z, Yin Z Q, Wang S, He D Y, Liu W, Guo G C, Han Z F 2022 Opt. Express 30 39911
Google Scholar
[80] Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64
Google Scholar
[81] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801
Google Scholar
[82] Zhu H T, Huang Y Z, Liu H, Zeng P, Zou M, Dai Y Q, Tang S B, Li H, You L X, Wang Z, Chen Y A, Ma X F, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801
Google Scholar
[83] Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 3903
Google Scholar
[84] Wang F X, Chen W, Yin Z Q, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 024070
Google Scholar
[85] Sekga C, Mafu M, Senekane M 2023 Sci. Rep. 13 1229
Google Scholar
计量
- 文章访问数: 129
- PDF下载量: 7
- 被引次数: 0