搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子集成的量子密钥分发和量子随机数生成器研究进展

于景春 芦文斌 陈宾 杜永强 谢锋 李蔚 韦克金

引用本文:
Citation:

光子集成的量子密钥分发和量子随机数生成器研究进展

于景春, 芦文斌, 陈宾, 杜永强, 谢锋, 李蔚, 韦克金

Recent progress on photon-integrated quantum key distribution and quantum random number generator

YU Jingchun, LU Wenbin, CHEN Bin, DU Yongqiang, XIE Feng, LI Wei, WEI Kejin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子密钥分发凭借其信息理论层面上的无条件安全性及窃听可探测性等独特优势, 在金融、政务、国防等安全敏感领域展现出广阔的应用前景. 集成光子学技术通过将传统量子密钥分发系统的核心器件高密度集成于单一芯片, 显著提升了系统的小型化程度、成本效益与长期稳定性, 是实现量子密钥分发规模化工程应用的核心技术路径. 本文系统综述了近期基于不同材料平台与架构的光子集成量子密钥分发实验进展, 以及用于生成真随机数的集成量子随机数生成器的最新研究动态. 该综述旨在为未来芯片化量子保密通信技术的发展提供技术路线指引.
    Quantum key distribution (QKD) relies on the fundamental principles of quantum mechanics and can theoretically achieve unconditionally secure communication that is provable by information theory. Quantum random number generators, on the other hand, utilize the inherent randomness of quantum phenomena and are capable of generating a truly random entropy source that is unpredictable, unbiased and unrepeatable. These two technologies are crucial for building highly trustworthy and secure communication systems resistant to quantum attacks. However, their large-scale deployment still faces challenges such as system performance optimization, cost control and scale production.Relying on wafer-level fabrication platforms and micro-nanometer processing, integrated photonics technology integrates the core devices of traditional QKD systems (e.g., light source, modulator, and detector) in a single chip at high density. It significantly improves the miniaturization, operational stability and cost-effectiveness of the system, and enhances the intrinsic security, and becomes a key enabling platform to drive QKD and QRNG from laboratory to engineering applications.In this paper, we systematically review the recent breakthroughs of photonic integrated QKD based on different material platforms (SOI/InP/TFLN/Si3N4) in terms of core metrics, such as transmission distance and key rate, as well as the significant breakthroughs of integrated QRNG in terms of random number generation rate and system integration. Finally, the future development direction of this field is discussed and outlooked from the four dimensions of practical security of QKD systems, on-chip implementation of cutting-edge QKD protocols, practical fully-integrated QKD systems, and synergistic optimization of high performance and high integration of integrated QRNG.
  • 图 1  集成DV-QKD系统示意图 (a) 基于硅光子平台的“偏振-路径转换”芯片结构示意图[46]; (b) 基于多像素SPSPD的高速QKD系统架构图[10]; (c) 2.5 GHz集成QKD系统架构图[48]; (d) 混合集成收发芯片的实验装置图[45]

    Fig. 1.  Schematic diagram of integrated DV-QKD systems: (a) “Polarization-path conversion” based on silicon photonics platform[46]; (b) architecture diagram of high-speed QKD system based on multi-pixel SPSPD[10]; (c) 2.5 GHz integrated QKD system architecture diagram[48]; (d) experimental setup diagram of hybrid integrated transceiver chip[45].

    图 2  基于硅光子平台的集成CV-QKD系统示意图及该集成芯片的电子显微镜和光学显微镜图像[63]

    Fig. 2.  Schematic diagram of the integrated CV-QKD system based on the silicon photonics platform and electron microscope and optical microscope images of the integrated chip[63].

    图 3  集成CV-QKD系统示意图 (a) 基于硅基集成的CV-QKD接收平台[52]; (b) 基于硅基集成的CV-QKD接收器芯片[53]; (c) 基于硅基集成的CV-QKD接收器结构图及该CV-QKD系统[55]; (d) 基于Ⅲ-Ⅴ/Si3N4的片上激光器[51]

    Fig. 3.  Schematic diagrams of integrated CV-QKD systems: (a) CV-QKD receiving platform based on silicon-based integration[52]; (b) CV-QKD receiver chip based on silicon-based integration[53]; (c) schematic diagram of the CV-QKD receiver based on silicon-based integration and the CV-QKD system[55]; (d) Ⅲ-Ⅴ/Si3N4-based on-chip lasers[51].

    图 4  集成QRNG系统示例 (a) 基于硅基集成芯片的完全可信QRNG系统[66]; (b) 基于InP光学平台的集成QRNG系统[26]; (c) 基于自制零差检测器的实验系统[64]; (d) 基于硅基集成芯片的SI-QRNG系统[68]

    Fig. 4.  Examples of integrated quantum random number generator systems: (a) a fully trusted QRNG system based on silicon-based integrated chips[66]; (b) an integrated QRNG system based on an InP optical platform[26]; (c) experimental systems based on self-made aberration detectors[64]; (d) SI-QRNG system based on silicon-based integrated chips[68].

    表 1  集成光量子平台的比较

    Table 1.  Comparison of integrated optical quantum platforms.

    对比维度 SOI InP TFLN Si3N4
    折射率
    (1550 nm)
    ~3.48 ~3.2 ~2.2 ~2.0
    透明窗口
    /μm
    1.1—8.0 0.9—1.7 0.4—5.0 0.25—6.00
    传输损耗 ★★★ ★★ ★★★★ ★★★★★
    工艺
    成熟度
    ★★★★★ ★★★ ★★ ★★★
    光源 ★★★ ★★★★★ ★★★
    探测器 ★★★ ★★★★ ★★★ ★★★
    调制器 ★★★ ★★★★ ★★★★★ ★★
    下载: 导出CSV

    表 2  基于不同平台集成DV-QKD系统

    Table 2.  Integrate DV-QKD system based on different platforms.

    文献 工艺 器件 编码方式 协议 重复频率
    /MHz
    传输损耗
    /dB
    平均速率
    /kbps
    光源 编码 解调 探测
    [43] SI × × × 偏振编码 BB84 312.5 20a 42.7
    [44] Si3N4 时间戳-相位编码 BB84 3350 10 12170
    [45] Si3N4/InP × × 时间戳-相位编码 BB84 1000 9.3 2370
    [10] SI × × 偏振编码 BB84 2500 2.2 115800
    [46] SI × × 偏振编码 BB84 50 18.857 0.24
    [47] SI × × 偏振编码 BB84 50 28.992 0.866
    [48] SI × 时间戳-相位编码 BB84 2500 39.5 9.4
    [49] TFLN × × 时间戳-相位编码 BB84 2500 4.1 11000
    [50] TFLN × × 时间戳-相位编码/相位编码 BB84 10 6.43 0.77
    下载: 导出CSV

    表 3  基于不同平台集成的CV-QKD系统

    Table 3.  Integrate CV-QKD system based on different platforms.

    文献 工艺 器件 编码方式 协议 重复频率/ MHz 传输损耗/dB 平均速率/kbps
    光源 编码 解调 探测
    [51] InP/Si3N4 × × 相位编码 GG02 250 10a 750
    [52] SI × × × 相位编码 GG02 1000 5.72a 1380
    [53] SI × × 相位编码 GG02 100 4.6 220
    [54] InP × × 相位编码 GG02 16 2.04 78
    [55] SI × 相位编码 DM CV-QKD 10000 2a 351000
    [56] SI × 相位编码 DM CV-QKD 16000 4a 246000
    [57] SI × 偏振编码/相位编码 DM CV-QKD 20000 1.98 1.213×106
    下载: 导出CSV

    表 4  基于不同平台的集成QRNG

    Table 4.  Integrated QRNG based on different platforms.

    文献工艺熵源设备信任探测采样方式生成速率/Mbit/s
    [64]SI真空噪声测量设备无关零差探测FPGA(实时)
    [65]InP自发辐射相位噪声完全可信光电探测示波器(离线)6110
    [66]SI真空噪声完全可信零差探测示波器(离线)1×105
    [67]SI真空态涨落源设备无关零差探测示波器(离线)146.2
    [68]SI光子偏振态源设备无关单光子探测单光子探测器+
    时间数字转换器(实时)
    4.04
    [69]SiO2真空噪声完全可信零差探测FPGA(实时)5×104
    [70]SI/InP真空噪声完全可信零差探测FPGA(实时)1.02
    [26]InP真空态涨落完全可信光电探测FPGA(实时)2000
    [71]SI真空噪声源设备无关零差探测FPGA(实时)20000
    [25]SI光子偏振态源设备无关单光子探测单光子探测器+
    时间数字转换器(实时)
    9.49
    [72]SI真空态涨落源设备无关外差探测示波器(离线)20212
    注: 表中所有基于不同平台集成的QRNG工作均采用了“Toeplitz Hashing”后处理技术.
    下载: 导出CSV
  • [1]

    Proctor T, Young K, Baczewski A D, Blume Kohout R 2025 Nat. Rev. Phys. 7 105Google Scholar

    [2]

    Fauseweh B 2024 Nat. Commun. 15 2123Google Scholar

    [3]

    Proctor T, Rudinger K, Young K, Nielsen E, Blume Kohout R 2022 Nat. Phys. 18 75Google Scholar

    [4]

    Ding X, Guo Y P, Xu M C, Liu R Z, Zou G Y, Zhao J Y, Ge Z X, Zhang Q H, Liu H L, Wang L J, Chen M C, Wang H, He Y M, Huo Y H, Lu C Y, Pan J W 2025 Nat. Photonics 19 387Google Scholar

    [5]

    Fujisaki E, Okamoto T 1999 19th Annual International Cryptology Conference Santa Barbara, California, USA, August 15–19, 1999 p537

    [6]

    Simmons G J 1979 ACM Comput. Surv. 11 305Google Scholar

    [7]

    Akter M S, Rodriguez C J, Shahriar H, Cuzzocrea A, Wu F 2023 IEEE International Conference on Big Data (BigData) Sorrento, Italy, December 15–18, 2023 p5408

    [8]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10–12, 1984 p175

    [9]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol 5 3Google Scholar

    [10]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [11]

    Li Y, Cai W Q, Ren J G, Wang C Z, Yang M, Zhang L, Wu H Y, Chang L, Wu J C, Jin B, Xue H J, Li X J, Liu H, Yu G W, Tao X Y, Chen T, Liu C F, Luo W B, Zhou J, Yong H L, Li Y H, Li F Z, Jiang C, Chen H Z, Wu C, Tong X H, Xie S J, Zhou F, Liu W Y, Ismail Y, Petruccione F, Liu N L, Li L, Xu F, Cao Y, Yin J, Shu R, Wang X B, Zhang Q, Wang J Y, Liao S K, Peng C Z, Pan J W 2025 Nature 640 47Google Scholar

    [12]

    Li W, Zhang L K, Lu Y C, Li Z P, Jiang C, Liu Y, Huang J, Li H, Wang Z, Wang X B, Zhang Q, You L X, Xu F H, Pan J W 2023 Phys. Rev. Lett. 130 250802Google Scholar

    [13]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [14]

    Zhang L K, Li W, Pan J W, Lu Y C, Li W W, Li Z P, Huang Y Z, Ma X F, Xu F H, Pan J W 2025 Phys. Rev. X 15 021037

    [15]

    Diamanti E, Lo H K, Qi B, Yuan Z L 2016 npj Quantum Inf. 2 16025Google Scholar

    [16]

    Liu Q, Huang Y M, Du Y Q, Zhao Z G, Geng M M, Zhang Z R, Wei K J 2022 Entropy 24 1334Google Scholar

    [17]

    Gabriel C, Wittmann C, Sych D, Dong R F, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711Google Scholar

    [18]

    Zheng Z Y, Zhang Y C, Huang W N, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105Google Scholar

    [19]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675Google Scholar

    [20]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H P 2011 Phys. Rev. A 83 023820Google Scholar

    [21]

    Wayne M A, Kwiat P G 2010 Opt. Express 18 9351Google Scholar

    [22]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105Google Scholar

    [23]

    Guo Y, Cai Q, Li P, Jia Z W, Xu B J, Zhang Q W, Zhang Y M, Zhang R N, Gao Z S, Shore K A, Wang Y C 2021 APL Photonics 6 066105Google Scholar

    [24]

    Wei S H, Yang J, Fan F, Huang W, Li D S, Xu B J 2017 Rev. Sci. Instrum. 88 123115Google Scholar

    [25]

    Du Y Q, Hua X, Zhao Z G, Sun X R, Zhang Z R, Xiao X, Wei K J 2025 Commun. Phys. 8 9Google Scholar

    [26]

    Marangon D G, Smith P R, Walk N, Paraïso T K, Dynes J F, Lovic V, Sanzaro M, Roger T, De Marco I, Lucamarini M, Yuan Z L, Shields A J 2024 Nat. Electron. 7 396Google Scholar

    [27]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [28]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [29]

    Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Lightwave Technol. 39 4374Google Scholar

    [30]

    Chen X, Milosevic M M, Stanković S, Reynolds S, Bucio T D, Li K, Thomson D J, Gardes F, Reed G T 2018 Proc. IEEE 106 2101Google Scholar

    [31]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photonics 4 518Google Scholar

    [32]

    Ogiso Y, Ozaki J, Ueda Y, Wakita H, Nagatani M, Yamazaki H, Nakamura M, Kobayashi T, Kanazawa S, Hashizume Y, Tanobe H, Nunoya N, Lda M, Miyamoto Y, Lshikawa M 2019 J. Lightwave Technol. 38 249

    [33]

    Abellan C, Amaya W, Domenech D, Muñoz P, Capmany J, Longhi S, Mitchell M W, Pruneri V 2016 Optica 3 989Google Scholar

    [34]

    Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L, Thompson M G 2017 Nat. Commun. 8 13984Google Scholar

    [35]

    Zhang M, Wang C, Kharel P, Zhu D, Lončar M 2021 Optica 8 652Google Scholar

    [36]

    Berikaa E, Alam M S, Li W J, Bernal S, Krueger B, Pittalà F, Plant D V 2023 IEEE Photon. Technol. Lett. 35 850Google Scholar

    [37]

    Lomonte E, Wolff M A, Beutel F, Ferrari S, Schuck C, Pernice W H P, Lenzini F 2021 Nat. Commun. 12 6847Google Scholar

    [38]

    Xiong W J, Wang G L, Li J F, Zhao C, Wang W W, Radamson H H 2021 J. Mater. Sci-Mater. El. 32 1

    [39]

    Wilmart Q, El Dirani H, Tyler N, Fowler D, Malhouitre S, Garcia S, Casale M, Kerdiles S, Hassan K, Monat C, Letartre X, Kamel A, Pu M, Yvind K, Oxenløwe L K, Rabaud W, Sciancalepore C, Szelag B, Olivier S 2019 Appl. Sci. 9 255Google Scholar

    [40]

    Sacher W D, Huang Y, Lo G Q, Poon J K S 2015 J. Lightw. Technol. 33 901Google Scholar

    [41]

    Gyger S, Zichi J, Schweickert L, Elshaari A W, Steinhauer S, Covre da Silva S F, Rastelli A, Zwiller V, Jöns K D, Errando Herranz C 2021 Nat. Commun. 12 1408Google Scholar

    [42]

    Schuck C, Guo X, Fan L, Ma X, Poot M, Tang H X 2016 Nat. Commun. 7 10352Google Scholar

    [43]

    Zhu C X, Chen Z Y, Li Y, Wang X Z, Wang C Z, Zhu Y L, Liang F T, Cai W Q, Jin G, Liao S K, Peng C Z 2022 Phys. Rev. Appl. 17 064034Google Scholar

    [44]

    Beutel F, Brückerhoff Plückelmann F, Gehring H, Kovalyuk V, Zolotov P, Goltsman G, Pernice W H P 2022 Optica 9 1121Google Scholar

    [45]

    Dolphin J A, Paraïso T K, Du H, Woodward R I, Marangon D G, Shields A J 2023 npj Quantum Inf. 9 84Google Scholar

    [46]

    Du Y Q, Zhu X, Hua X, Zhao Z G, Hu X, Qian Y, Xiao X, Wei K J 2023 Chip 2 100039Google Scholar

    [47]

    Wei K J, Hu X, Du Y Q, Hua X, Zhao Z G, Chen Y, Huang C F, Xiao X 2023 Photon. Res. 11 1364Google Scholar

    [48]

    Sax R, Boaron A, Boso G, Atzeni S, Crespi A, Grünenfelder F, Rusca D, Al Saadi A, Bronzi D, Kupijai S 2023 Photon. Res. 11 1007Google Scholar

    [49]

    Lin Z H, Gao Y F, Zhou L, Yuan H H, Zhu Y T, Lin Z J, Zhang W, Huang Y D, Cai X L, Yuan Z L 2025 Opt. Quantum 3 195Google Scholar

    [50]

    Heo H, Woo M K, Park C H, Jang H S, Hwang H, Lee H, Seo M K, Kim S, Kwon H, Jung H, Han S W 2025 APL Photonics 10 031301Google Scholar

    [51]

    Li L, Wang T, Li X H, Huang P, Guo Y Y, Lu L J, Zhou L J, Zeng G H 2023 Photon. Res. 11 504Google Scholar

    [52]

    Bian Y M, Pan Y, Xu X S, Zhao L, Li Y, Huang W, Zhang L, Yu S, Zhang Y C, Xu B J 2024 Appl. Phys. Lett. 124 174001Google Scholar

    [53]

    Piétri Y, Trigo Vidarte L, Schiavon M, Vivien L, Grangier P, Rhouni A, Diamanti E 2024 Opt. Quantum 2 428Google Scholar

    [54]

    Aldama J, Sarmiento S, Vidarte L T, Etcheverry S, Grande I L, Castelvero L, Hinojosa A, Beckerwerth T, Piétri Y, Rhouni A 2024 arXiv: 2412.03208 [quant-ph]

    [55]

    Hajomer A A, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197Google Scholar

    [56]

    Hajomer A A, Bomhals A, Bruynsteen C, Sidhique A, Derkach I, Andersen U L, Yin X, Gehring T 2025 arXiv: 2504.09308 [quant-ph]

    [57]

    Ng S Q, Kanitschar F, Zhang G, Wang C 2025 arXiv: 2504.08298 [quant-ph]

    [58]

    Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y S, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274Google Scholar

    [59]

    Bunandar D, Lentine A, Lee C, Cai H, Long C M, Boynton N, Martinez N, DeRose C, Chen C C, Grein M, Trotter D, Starbuck A, Pomerene A, Hamilton S, Wong F N C, Camacho R, Davids P, Urayama J, Englund D 2018 Phys. Rev. X 8 021009

    [60]

    Cao L, Luo W, Wang Y X, Zou J, Yan R D, Cai H, Zhang Y, Hu X L, Jiang C, Fan W J, Zhou X Q, Dong B, Luo X S, Lo G Q, Wang Y X, Xu Z W, Sun S H, Wang X B, Hao Y L, Jin Y F, Kwong D L, Kwek L C, Liu A Q 2020 Phys. Rev. Appl. 14 011001Google Scholar

    [61]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5 162Google Scholar

    [62]

    Zhang Y C, Chen Z Y, Chu B J, Zhou C, Wang X Y, Zhao Y J, Xu Y F, Xu C, Wang H J, Zheng Z Y, Huang Y D, Xu C C, Zhang X X, Shen T, Huang G, Zheng Y W, Fei Z X, Huang W N, Zhu M L, Huang L Y, Luo B, Yu S, Guo H 2020 Bull. Am. Phys. Soc. 65 1

    [63]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [64]

    Wang C, Primaatmaja I W, Ng H J, Haw J Y, Ho R, Zhang J R, Zhang G, Lim C 2023 Nat. Commun. 14 316

    [65]

    Chrysostomidis T, Roumpos I, Outerelo D A, Troncoso Costas M, Moskalenko V, Garcia Escartin J C, Diaz Otero F J, Vyrsokinos K 2023 EPJ Quantum Technol. 10 5Google Scholar

    [66]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330Google Scholar

    [67]

    Li L, Cai M L, Wang T, Tan Z C, Huang P, Wu K, Zeng G H 2024 Photon. Res. 12 1379Google Scholar

    [68]

    Zhao Z G, Hua X, Du Y Q, Xu C Y, Xie F, Zhang Z R, Xiao X, Wei K J 2024 Opt. Express 32 38793Google Scholar

    [69]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209Google Scholar

    [70]

    Wang X Y, Zheng T, Jia Y X, Huang J, Zhu X Y, Shi Y Q, Wang N, Lu Z G, Zou J, Li Y M 2024 Photonics 11 468Google Scholar

    [71]

    Bian Y M, Yang J, Jiang H Y, Huang W, Su Q, Yu S, Zhang L, Zhang Y C, Xu B J 2025 Opt. Lett. 50 1216Google Scholar

    [72]

    Bertapelle T, Avesani M, Santamato A, Montanaro A, Chiesa M, Rotta D, Artiglia M, Sorianello V, Testa F, De Angelis G, Contestabile G, Vallone G, Romagnoli M, Villoresi P 2025 Opt. Quantum 3 111Google Scholar

    [73]

    Sun S H, Huang A Q 2022 Entropy 24 260Google Scholar

    [74]

    Chen Y, Huang C F, Chen Z H, He W J, Zhang C X, Sun S H, Wei K J 2022 Phys. Rev. A 106 022614Google Scholar

    [75]

    Zhang C, Hu X L, Jiang C, Chen J P, Liu Y, Zhang W J, Yu Z W, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 128 190503Google Scholar

    [76]

    Kang X, Ye P, Wang S, Zhang G W, Wang Z H, Chen J L, Yin Z Q, He D Y, Chen W, Fan Yuan G J, Guo G C, Han Z F 2025 Phys. Rev. Appl. 23 024014Google Scholar

    [77]

    Tan H, Li W, Zhang L K, Wei K J, Xu F H 2021 Phys. Rev. Appl. 15 064038Google Scholar

    [78]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611Google Scholar

    [79]

    Ye P, Chen W, Wang Z H, Zhang G W, Ding Y Y, Huang G Z, Yin Z Q, Wang S, He D Y, Liu W, Guo G C, Han Z F 2022 Opt. Express 30 39911Google Scholar

    [80]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar

    [81]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [82]

    Zhu H T, Huang Y Z, Liu H, Zeng P, Zou M, Dai Y Q, Tang S B, Li H, You L X, Wang Z, Chen Y A, Ma X F, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [83]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 3903Google Scholar

    [84]

    Wang F X, Chen W, Yin Z Q, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 024070Google Scholar

    [85]

    Sekga C, Mafu M, Senekane M 2023 Sci. Rep. 13 1229Google Scholar

  • [1] 李思莹, 朱顺, 胡飞飞, 黄昱, 林旭斌, 覃楚珺, 曹渊, 刘云. 改进的关联源量子密钥分发. 物理学报, doi: 10.7498/aps.74.20250268
    [2] 郭晓敏, 王岐岐, 罗越, 宋智杰, 李正雅, 瞿毅坤, 郭龑强, 肖连团. 实时熵源评估二重并行连续变量量子随机数发生器. 物理学报, doi: 10.7498/aps.74.20250333
    [3] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议. 物理学报, doi: 10.7498/aps.73.20241269
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, doi: 10.7498/aps.72.20230652
    [5] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议. 物理学报, doi: 10.7498/aps.71.20211456
    [6] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, doi: 10.7498/aps.71.20220344
    [7] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.69.20191689
    [8] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, doi: 10.7498/aps.63.140303
    [9] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, doi: 10.7498/aps.59.287
    [10] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, doi: 10.7498/aps.57.4941
    [11] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, doi: 10.7498/aps.57.5605
    [12] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, doi: 10.7498/aps.57.678
    [13] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案. 物理学报, doi: 10.7498/aps.57.5600
    [14] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案. 物理学报, doi: 10.7498/aps.56.6427
    [15] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, doi: 10.7498/aps.56.6434
    [16] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, doi: 10.7498/aps.56.1924
    [17] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, doi: 10.7498/aps.56.5243
    [18] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统. 物理学报, doi: 10.7498/aps.55.4642
    [19] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统. 物理学报, doi: 10.7498/aps.54.3622
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  129
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-18
  • 修回日期:  2025-07-17
  • 上网日期:  2025-08-08

/

返回文章
返回