搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物给体和非富勒烯受体分子的激发态特性

徐凌霞 梁咏淇

引用本文:
Citation:

聚合物给体和非富勒烯受体分子的激发态特性

徐凌霞, 梁咏淇

Excited state characteristics of polymer donor and non-fullerene acceptor molecules

XU Lingxia, LIANG Yongqi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 有机半导体材料的高激子束缚能限制了电荷分离效率, 研究聚合物给体和非富勒烯受体分子激发态特性对优化材料设计和提升有机光伏器件性能至关重要. 本文通过紧束缚量子模型, 对比两类材料的激发态性质, 发现非富勒烯比聚合物的晶格畸变更小, 带隙更窄, 束缚能更低, 并可以通过降低电子-晶格耦合强度来进一步减小聚合物和非富勒烯分子晶格畸变、带隙及束缚能. 除此之外, 还发现通过增强非富勒烯分子中间基团的给电子能力或端基吸电子能力, 可以优化能级结构, 进一步降低束缚能, 实现有效的电荷分离. 结果表明, 聚合物/非富勒烯有机光伏体系有效的电荷转移与分离源于其分子激发态特性的差异, 通过协同调控电子-晶格耦合作用和非富勒烯分子推拉式电子结构, 可设计高性能的有机光电材料并开发新型非富勒烯有机光伏器件.
    The high exciton binding energy of organic semiconductor materials limits charge separation efficiency. Investigating the excited state characteristics and modulation mechanisms of polymer donor and non-fullerene acceptor molecules is crucial for optimizing material design and enhancing the performance of organic photovoltaic devices. Therefore, this study investigates the excited state characteristics in polymer and non-fullerene organic materials. The tight-binding quantum mechanical method is used to systematically compare the excited state characteristics (including lattice geometry, band structure, and binding energy) between polymer donor and non-fullerene acceptor molecules, with particular emphasis on the role of electron-phonon coupling in modulating these excited state characteristics. The results indicate that non-fullerene acceptor molecules exhibit smaller lattice distortion, narrower bandgap, and lower binding energy than polymer donor molecules. It is precisely due to the different excited state characteristics of the polymer donor and non-fullerene acceptor molecules that the exciton binding energy in the organic photovoltaic system they constitute can be effectively reduced, while also providing a favorable energy-level shift for exciton dissociation. This significantly enhances the efficiency of charge transfer and separation. Furthermore, the decrease of electron-lattice coupling strength can further reduce these parameters in both polymer donor and non-fullerene acceptor molecules. By enhancing the electron-donating capability of central groups or the electron-withdrawing capacity of end groups in non-fullerene acceptor molecules, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels can be shifted upward or downward. The upshifted HOMO and LUMO energy levels are accompanied by an increase in molecular polarizability and a decrease in reorganization energy, while the downshifted HOMO and LUMO energy levels lead to an enhanced molecular dipole moment and improved electron affinity. This optimized energy-level structure further reduces the binding energy and achieves efficient charge separation. These findings demonstrate that the efficient charge transfer and separation in polymer/non-fullerene organic photovoltaic systems originate from their distinct molecular excited state characteristics. This basic understanding enables the rational design of high-performance organic optoelectronic materials and the development of novel organic photovoltaic devices by strategically adjusting the electron-phonon coupling strength and push-pull electronic structures of non-fullerene acceptors.
  • 图 1  (a) 聚合物(P3HT)和非富勒烯(Y6)的化学式; (b) 聚合物和非富勒烯简化的分子模型

    Fig. 1.  (a) Chemical structures of the polymer donor (P3HT) and the non-fullerene acceptor (Y6); (b) simplified molecular models of the polymer donor and the non-fullerene acceptor.

    图 2  不同电子-晶格相互作用常数时, 聚合物和非富勒烯分子激发态的晶格位形 (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $

    Fig. 2.  Lattice configurations of excited states in the polymer and non-fullerene molecule for different electron-lattice interaction constant: (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $.

    图 3  聚合物和非富勒烯分子激发态的带隙(Eg)随电子-晶格常数(α)的变化

    Fig. 3.  The bandgap (Eg) of excited states in the polymer and non-fullerene molecule as a function of the electron-lattice constant (α).

    图 4  聚合物和非富勒烯分子激发态的束缚能(EB)随电子-晶格常数(α)的变化

    Fig. 4.  The binding energy (EB) of excited states in the polymer and non-fullerene molecule as a function of the electron-lattice constant (α).

    图 5  不同电子-晶格相互作用常数时, 非富勒烯分子的HOMO和LUMO能级随中间基团给电子能力($ {\Delta _{{\text{on}}}} $)的变化 (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $

    Fig. 5.  HOMO and LUMO energy levels of the non-fullerene molecule as a function of the electron-donating ability of the central group ($ {\Delta _{{\text{on}}}} $) for different electron-lattice interaction constant: (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $.

    图 6  不同电子-晶格相互作用常数时, 非富勒烯分子的HOMO和LUMO能级随端基吸电子能力($ {\Delta '_{{\text{on}}}} $)的变化 (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $

    Fig. 6.  HOMO and LUMO energy levels of the non-fullerene molecule as a function of the electron-withdrawing ability of the end group ($ {\Delta '_{{\text{on}}}} $) for differnet electron-lattice interaction constant: (a) $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $; (b) $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $; (c) $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $.

    图 7  电子-晶格相互作用常数分别为$ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $、$ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $和 $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $时, 非富勒烯分子激发态的束缚能(EB)随(a)中间基团给电子能力($ {\Delta _{{\text{on}}}} $)和(b)端基吸电子能力($ {\Delta '_{{\text{on}}}} $)的变化

    Fig. 7.  Binding energy (EB) of excited states in the non-fullerene molecule as a function of (a) the electron-donating ability of the central group ($ {\Delta _{{\text{on}}}} $) and (b) the electron-withdrawing ability of the end group ($ {\Delta '_{{\text{on}}}} $) when the electron-lattice interaction constants is $ \alpha {\text{ = 3}}{\text{.9 eV/{\AA}}} $, $ \alpha {\text{ = 4}}{\text{.1 eV/{\AA} }} $, and $ \alpha {\text{ = 4}}{\text{.3 eV/{\AA} }} $, respectively.

  • [1]

    Zhang G, Lin F R, Qi F, Heumüller T, Distler A, Egelhaaf H J, Li N, Chow P C Y, Brabec C J, Jen A K Y, Yip H L 2022 Chem. Rev. 122 14180Google Scholar

    [2]

    孟婧, 高博文 2023 物理学报 72 128801Google Scholar

    Meng J, Gao B W 2023 Acta Phys. Sin. 72 128801Google Scholar

    [3]

    Yang N, Zhang S, Cui Y, Wang J, Cheng S, Hou J 2025 Nat. Rev. Mater. 10 404Google Scholar

    [4]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

    [5]

    Cao Z, Tolba S A, Li Z, Mason G T, Wang Y, Do C, Rondeau-Gagné S, Xia W, Gu X 2023 Adv. Mater. 35 2302178Google Scholar

    [6]

    Shen D E, Lang A W, Collier G S, Österholm A M, Smith E M, Tomlinson A L, Reynolds J R 2022 Chem. Mater. 34 1041Google Scholar

    [7]

    Wang H, Lu H, Chen Y N, Ran G, Zhang A, Li D, Yu N, Zhang Z, Liu Y, Xu X, Zhang W, Bao Q, Tang Z, Bo Z 2022 Adv. Mater. 34 2105483.Google Scholar

    [8]

    An C, Hou J 2022 Acc. Mater. Res. 3 540Google Scholar

    [9]

    Jiang Y, Sun S, Xu R, Liu F, Miao X, Ran G, Liu K, Yi Y, Zhang W, Zhu X 2024 Nat. Energy 9 975Google Scholar

    [10]

    He D, Zhou J, Zhu Y, Li Y, Wang K, Li J, Zhang J, Li B, Lin Y, He Y, Wang C, Zhao F 2024 Adv. Mater. 36 2308909Google Scholar

    [11]

    Yang N, Zhang S, Cui Y, Wang J, Cheng S, Hou J 2025 Nat. Rev. Mater. 10 404Google Scholar

    [12]

    Li Z Y, Zhang X J, Kong X L, Zhang J Y, Sun R, Li J, Min J, Yang G, Song C J, Sun C K 2025 Sci. Chin. -Chem. 68 3797Google Scholar

    [13]

    Lu H, Li D, Liu W, Ran G, Wu H, Wei N, Tang Z, Liu Y, Zhang W, Bo Z 2024 Angew. Chem. Int. Ed. 63 e202407007Google Scholar

    [14]

    Jiang P, Liu Y, Song J, Bo Z 2024 Acc. Chem. Res. 57 3419Google Scholar

    [15]

    Yao H, Wang J, Xu Y, Hou J 2023 Chem. Mater. 35 807Google Scholar

    [16]

    Gao Y, Chen Q, Wang L, Huang H, Zhang A, Li C, Xu X, Bo Z 2022 J. Mater. Chem. C 10 10389Google Scholar

    [17]

    Kim B, Lee Y S, Um D H, Jeong W, Lee S, Kim K, Nam G, Hwang H, Kim S, Kim T, Lee K, Kang H, Kim B 2024 Adv. Funct. Mater. 34 2407403Google Scholar

    [18]

    Wang R, Zhang C, Li Q, Zhang Z, Wang X, Wang X 2020 J. Am. Chem. Soc. 142 12751Google Scholar

    [19]

    Zhang G, Chen X K, Xiao J, Chow P C Y, Ren M, Kupgan G, Jiao X, Chan C C S, Du X, Xia R, Chen Z, Yuan J, Zhang Y, Zhang S, Liu Y, Zou Y, Yan H, Wong K S, Coropceanu V, Li N, Brabec C J, Bredas J L, Yip H L, Cao Y 2020 Nat. Commun. 11 3943Google Scholar

    [20]

    Li P, Fang J, Wang Y, Manzhos S, Cai L, Song Z, Li Y, Song T, Wang X, Guo X, Zhang M, Ma D, Sun B 2021 Angew. Chem. Int. Ed. 60 15054Google Scholar

    [21]

    Chen Z, Zhu H 2022 J. Phys. Chem. Lett. 13 1123Google Scholar

    [22]

    Xu J, Jo S B, Chen X, Zhou G, Zhang M, Shi X, Lin F, Zhu L, Hao T, Gao K, Zou Y, Su X, Feng W, Jen A K Y, Zhang Y, Liu F 2022 Adv. Mater. 34 2108317Google Scholar

    [23]

    Zhang K N, Hao X T 2023 J. Phys. Chem. Lett. 14 6051Google Scholar

    [24]

    Ji Y, Xu L, Yin H, Cui B, Zhang L, Hao X, Gao K 2021 J. Mater. Chem. A 9 16834Google Scholar

    [25]

    Ji Y, Mu X, Yin H, Cui B, Hao X, Gao K 2023 J. Phys. Chem. Lett. 14 3811Google Scholar

    [26]

    Xu L, Qie Y, Jia X 2025 J. Phys. Chem. C 129 10775Google Scholar

    [27]

    Fu R, Shuai Z, Liu J, Sun X, Hicks J 1988 Phys. Rev. B 38 6298Google Scholar

    [28]

    Penson K A, Holz A, Bennemann K H 1976 Phys. Rev. B 13 433Google Scholar

    [29]

    Rawson J, Angiolillo P J, Therien M J 2015 Proc. Natl. Acad. Sci. 112 13779Google Scholar

    [30]

    Li C, Song J, Lai H, Zhang H, Zhou R, Xu J, Huang H, Liu L, Gao J, Li Y, Jee M H, Zheng Z, Liu S, Yan J, Chen X K, Tang Z, Zhang C, Woo H Y, He F, Gao F, Yan H, Sun Y 2025 Nat. Mater. 24 433Google Scholar

    [31]

    Zhu X, Zhang G, Zhang J, Yip H L, Hu B 2020 Joule 4 2443Google Scholar

    [32]

    Liu X, Li Y, Ding K, Forrest S 2019 Phys. Rev. Appl. 11 024060Google Scholar

    [33]

    Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z 2021 Angew. Chem. Int. Ed. 133 15476Google Scholar

    [34]

    Li S, Li C Z, Shi M, Chen H 2020 ACS Energy Lett. 5 1554Google Scholar

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, doi: 10.7498/aps.73.20240047
    [2] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, doi: 10.7498/aps.73.20231570
    [3] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, doi: 10.7498/aps.71.20211839
    [4] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, doi: 10.7498/aps.68.20181872
    [5] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, doi: 10.7498/aps.68.20190432
    [6] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, doi: 10.7498/aps.65.188201
    [7] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, doi: 10.7498/aps.65.067202
    [8] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, doi: 10.7498/aps.64.186301
    [9] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, doi: 10.7498/aps.61.155206
    [10] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, doi: 10.7498/aps.61.194213
    [11] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, doi: 10.7498/aps.60.047105
    [12] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究. 物理学报, doi: 10.7498/aps.59.7762
    [13] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, doi: 10.7498/aps.58.3058
    [14] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, doi: 10.7498/aps.58.459
    [15] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究. 物理学报, doi: 10.7498/aps.57.5729
    [16] 徐国亮, 肖小红, 耿振铎, 刘玉芳, 朱正和. 甲基乙烯基硅酮在外场作用下的光激发特性研究. 物理学报, doi: 10.7498/aps.56.5196
    [17] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, doi: 10.7498/aps.54.4782
    [18] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究. 物理学报, doi: 10.7498/aps.54.3087
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, doi: 10.7498/aps.51.1634
    [20] 侯春风, 阿不都热苏力, 杜春光, 孙秀冬, 李师群. 光折变有机聚合物中的空间孤子. 物理学报, doi: 10.7498/aps.50.2159
计量
  • 文章访问数:  299
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-19
  • 修回日期:  2025-07-17
  • 上网日期:  2025-09-02

/

返回文章
返回