-
高温高压下硅基设备因自热效应漏电及形变,无法长期稳定工作。碳化硅作为第三代半导体在高温高频场景优势显著,但其4H-SiC器件极限高温性能瓶颈源于欧姆电极与金属互连稳定性,当前引线电极存在输出不稳定问题,高温下氧气侵入易致输出失效。研究在SiC/Ti/TaSi2/Pt欧姆接触基础上,提出分批次溅射退火工艺制备耐高温引线电极,通过改变退火与溅射顺序,先在SiC衬底溅射Ti/TaSi2并退火形成欧姆接触,再沉积Pt保护层,构建新型SiC/Ti/TaSi2/Pt电极结构。分批次溅射后退火形成的电极结构更致密,600℃高温老化实验表明,Ti/TaSi2形成欧姆接触后溅射Pt的电极电学性能更稳定,即初始比接触电阻率为6.35×10-5 Ω·cm2,20 h空气老化后仍保持欧姆特性; Pt可有效抑制原子扩散和氧化反应使其电极微观形貌平整无卷曲。分批次溅射退火工艺能显著提升SiC欧姆接触综合性能,对其他金属组合欧姆接触的结构优化、稳定性提升及应用拓展具有重要指导意义,为开发热稳定性强、适应复杂环境的欧姆接触提供思路。Under high temperature and pressure conditions, silicon-based devices experience leakage and deformation due to the self-heating effect, rendering them incapable of long-term stable operation. Silicon carbide (SiC), as a representative third-generation semiconductor material, is an ideal choice for high-temperature, high-frequency, and high-power electronic devices. However, the high-temperature performance limitations of 4H-SiC devices stem from the stability of ohmic contact electrodes and metal interconnects. Current lead electrodes suffer from output instability issues, and oxygen ingress at high temperatures can easily cause output failure. Previous studies indicate that the SiC/Ti/TaSi2/Pt multilayer structure exhibits excellent potential for ohmic contacts. Building upon this ohmic contact foundation, this study proposes a batch sputtering-annealing process to fabricate high-temperature-resistant lead electrodes. This involves altering the sequence of annealing and sputtering: first sputtering Ti/TaSi2 onto the SiC substrate and annealing to form the ohmic contact, followed by depositing a Pt protective layer to construct a novel SiC/Ti/TaSi2/Pt electrode structure. Comparative analysis of the two experimental groups was conducted using SEM, AES, XRD, thin-film stress measurement, and semiconductor analyzers. The batch-sputtered and annealed electrode structure exhibited enhanced density and reduced residual stress, with an initial specific contact resistivity of 6.35 × 10-5 Ω·cm2. High-temperature aging tests at 600°C demonstrated superior electrical stability for electrodes formed by sputtering Pt onto Ti/TaSi2 after ohmic contact formation. These electrodes maintained ohmic characteristics even after 20 hours of air aging, whereas conventional cosputtered ohmic contacts transitioned to Schottky contacts. Pt effectively suppressed atomic diffusion and oxidation reactions, resulting in a smooth electrode microstructure without curling. The batch sputtering-annealing process not only significantly enhances the overall performance of SiC ohmic contacts but also provides crucial guidance for the structural design and performance improvement of ohmic contacts using other metal combinations. This approach holds significant reference value for the high-temperature packaging of third-generation semiconductor power devices and the development of electronic systems operating in harsh environments.
-
Keywords:
- Silicon carbide /
- sputtering /
- lead electrode /
- ohmic contact
-
[1] Wright N G, Horsfall A B 2007 Journal of Physics D: Applied Physics 40 6345
[2] Lin H-F, Xie E-Q, Ma Z-W, Zhang J, Peng A-H, He D-Y 2004 Acta Physica Sinica 53 2780
[3] Chen J-J, Peng S-P, Deng S-L, Zhou W, Fan Z-Q, Zhang X-J 2025 Acta Physica Sinica 74
[4] Anoldo L, Triolo C, Panarello S, Garescì F, Russo S, Messina A A, Calabretta M, Patanè S 2021 IEEE Electron Device Letters 42 1089
[5] Ding C, Liu H, Ngo K D T, Burgos R, Lu G Q 2021 IEEE Transactions on Power Electronics 36 11672
[6] Li G, Xu M, Zou D 2023 Crystals 13 1106
[7] S.M. Sze K K N 2006 Physics of Semiconductor Devices (New York) pp335-339
[8] Shi M(translated by Zhao H M)2002 Semiconductor Device Physics and Processes (2nd Edition) (Suzhou University Press) pp226-227 (in Chinese)
[9] Vivona M, Greco G, Lo Nigro R, Bongiorno C, Roccaforte F 2015 Journal of Applied Physics 118 035705
[10] Evans L J, Okojie R S, Lukco D 2012 Materials Science Forum 717-720 841
[11] T G 2017 M.S. Thesis (Xian: Xidian University) (in Chinese)
[12] Zhang Q, Liu Y, Li H, Wang J, Wang Y, Cheng F, Han H, Zhang P 2024 Sensors 24 7731
[13] Han L, Liang L, Kang Y, Qiu Y 2021 IEEE Transactions on Power Electronics 36 2080
[14] He Y, Lv H, Tang X, Song Q, Zhang Y, Han C, Guo T, He X, Zhang Y, Zhang Y 2019 Journal of Alloys and Compounds 805 999
[15] Liu C, Du J, Rong L, Luo T, Gao K, Yin Y, Xu J 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 23-25 Nov. 2020 p247-250
[16] Okojie R S, Lukco D, Chen Y L, Spry D J 2002 Journal of Applied Physics 91 6553
[17] Wu C, Fang X, Kang Q, Fang Z, Sun H, Zhang D, Zhao L, Tian B, Maeda R, Jiang Z 2023 Journal of Materials Research and Technology 24 2428
[18] Zhang M, Ren X, Chu H, Lv J, Li W, Wang W, Yang Q, Feng P 2020 Corrosion Science 177 108982
[19] Zhu H, Yang T, Zhou Y, Hua S, Yang J 2019 De Gruyter Brill 74 353
[20] Ng K K, Liu R 1990 IEEE Transactions on Electron Devices 37 1535
[21] Berger H H 1972 Journal of The Electrochemical Society 119 507
[22] Wang Y-Y, Zhen C-M, Gong H-X, Yan Z-J, Wang Y-F, Liu X-Q, Yang Y-H, He S-H 2000 Acta Physica Sinica 49 1348
[23] Yu S-Z, Song Y, Dong J-R, Sun Y-R, Zhao Y-M, He Y 2016 Chinese Physics B 25 118101
[24] Scorzoni A, Finetti M 1988 Materials Science Reports 3 79
[25] Zhou S-X, Ai L-K, Qi M, Xu A-H, Yan J-S, Li S-S, Jin Z 2021 Chinese Physics B 30 027304
[26] Qiao X, Xia T, Chen P 2021 Chinese Physics B 30 018104
[27] Sha Y-C, Li Z-W, Jia Z-C, Han B, Ni X-W 2023 Chinese Physics B 32 106104
[28] Huang S, Zhang X 2006 Journal of Micromechanics and Microengineering 16 382
[29] Han L, Du C, Ma Z, Jiang Y, Xiong K, Wang W, Chen H, Deng Z, Jia H 2021 Chinese Physics Letters 38 068102
[30] Santerre F, El Khakani M A, Chaker M, Dodelet J P 1999 Applied Surface Science 148 24
[31] Kwong D L 1984 Thin Solid Films 121 43
[32] Yoon D S, Lee S M, Baik H K 2000 Journal of The Electrochemical Society 147 3477
计量
- 文章访问数: 46
- PDF下载量: 0
- 被引次数: 0