-
碳基材料因其独特且优异的光、热、电、磁、力等物理特性在红外光电探测领域备受关注,这些特性使其在通信、军事、成像、能源、生物等领域具有广泛的应用前景。然而,在面向工程化应用的实际场景中,碳基材料仍面临诸多挑战,如富勒烯、石墨烯和单根碳纳米管在红外波段吸收弱、灵敏度不足、响应慢等。碳基材料与波导集成,一方面可限域光场,有效抑制光传输的环境耗散,提升光与物质的耦合效率,从而提高探测器的信噪比、灵敏度、响应速度与工作带宽;另一方面,其工艺兼容CMOS加工工艺,有望实现低成本、高密度集成,可满足下一代红外光电探测器的发展需要。本文围绕多种波导材料集成的碳基红外光电探测器展开综述,详细介绍分析了器件的性能增强策略与发展瓶颈,最后展望了波导集成的碳基红外探测器的发展方向。Carbon-based materials have garnered significant attention in the field of infrared photodetection due to their unique and excellent physical properties, including optical, thermal, electrical, magnetic, and mechanical properties. These characteristics endow them with broad application prospects in various fields such as communication, military, imaging, energy, and biology. However, in practical scenarios oriented towards engineering applications, carbon-based materials still encounter numerous challenges, including weak absorption in the infrared band, insufficient sensitivity, and slow response in fullerenes, graphene, and single carbon nanotubes. When integrated with waveguides, carbon-based materials can effectively suppress environmental dissipation of light transmission, confine the light field, enhance the coupling efficiency between light and matter, thereby improving the signal-to-noise ratio, sensitivity, response speed, and operating bandwidth of the detector. On the other hand, waveguide-integrated photodetectors are compatible with CMOS processing technology, promising low-cost, high-density integration to meet the development needs of next-generation infrared photodetectors. This paper provides an overview of carbon-based infrared photodetectors integrated with various waveguide materials, offering a detailed analysis of performance enhancement strategies and development bottlenecks for these devices. Finally, it explores the future directions of waveguide-integrated carbon-based infrared detectors.
-
Keywords:
- carbon-based materials /
- graphene /
- waveguide integration /
- infrared detector
-
[1] Weiss N O, Zhou H, Liao, L, Liu Y, Jiang S, Huang Y, Duan X 2012 Advanced materials 24 5782
[2] Castro Neto A H, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Reviews of modern physics 81 109
[3] Richter M, Heumüller T, Matt G J, Heiss W, Brabe C J 2017 Advanced Energy Materials 7 1601574
[4] Cheng Z, Li Z, Li M Y, Wen X, Ding X, Xu H, Liu S 2024 Journal of Materials Chemistry A 12 1685
[5] Na W, Zhang J, Cui F, Li X, Shen K, Wu J, Zou G, Xu H 2024 24th International Conference on Transparent Optical Networks, Italy, Jul 14-18, 2024 p1
[6] Lin Q, Zhao C, Li M, Xu H 2024 Chemosensors 12 255
[7] Li X, Dai X, Xu H, Shen K, Guo J, Li C, Zou G, Choy K L, Parkin I P, Guo Z, Liu H 2021 Science China Materials 64 1964
[8] Xu H, Han X, Dai X, Liu W, Wu J, Zhu J, Kim D, Zou G, Sablon K A, Sergeev A, Guo Z 2018 Advanced materials 30 1706561
[9] Itkis M E, Borondics F, Yu A, Haddon R C 2006 Science 312 413
[10] St-Antoine B C, Ménard D, Martel R 2011 Nano letters 11 609
[11] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature nanotechnology 4 839
[12] Mueller T, Xia F, Avouris P 2010 Nature photonics 4 297
[13] Yang Q, Zhang C, Wu S, Li S, Bao Q, Giannini V, Maier S A, Li X 2018 Nano Energy 48 161
[14] Liang S, Ma Z, Wu G, Wei N, Huang L, Huang H, Liu H, Wang S, Peng L M 2016 ACS nano 10 6963
[15] Cao X, Peng L, Liu L, Lv J, Li Z, Tian F, Dong Y, Liu X, Shen Y, Sun H, Xu Y, Fang W, Gao C 2022 Carbon 198 244
[16] Jin Y, Zhang T, Zhao J, Zhao Y, Liu C, Song J, Hao X, Wang J, Jiang K, Fan S, Li Q 2021 Carbon 178 616
[17] Bosnick K, Gabo N, McEuen P 2006 Appl. Phys. Lett. 89 163121
[18] Lee J U, Gipp P P, Heller C M 2004 Appl. Phys. Lett. 85 145
[19] Liu Y, Han J, Wei N, Qiu S, Li H, Li Q, Wang S, Peng L M 2016 Nanoscale 8 17122
[20] Pradhan B, Setyowati K, Liu H, Waldeck D H, Chen J 2008 Nano letters 8 1142
[21] Park S, Kim S J, Nam J H, Pitner G, Lee T H, Ayzner A L, Wang H, Fong S W, Vosgueritchian M, Park Y J, Brongersma M L 2014 Advanced Materials 27 759
[22] Arnold M S, Zimmerman J D, Renshaw C K, Xu X, Lunt R R, Austin C M, Forrest S R 2009 Nano letters 9 3354
[23] Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nature communications 2 458
[24] Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano letters 12 2773
[25] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer F P, Gatti F, Koppens F H 2012 Nature nanotechnology 7 363
[26] Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nature nanotechnolog 9 273
[27] Koester S J, Li M 2013 IEEE Journal of Selected Topics in Quantum Electronics 20 84
[28] Tailor N K, Aranda C A, Saliba M, Satapathi S 2022 ACS Materials Letters 4 2298
[29] Long M, Wang P, Fang H, Hu W 2019 Advanced Functional Materials 29 1803807
[30] Xu J, Zhang Z, Zhang W, Chen Z 2024 Processes 12 1728
[31] Periyanagounder D, Gnanasekar P, Varadhan P, He J H, Kulandaivel J 2018 Journal of Materials Chemistry C 6 9545
[32] Cai X, Wang S, Peng L M 2023 Nano Res. Energy 2 e9120058
[33] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano letters 14 6109
[34] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nature nanotechnology 9 780
[35] Tissot J L, Trouilleau C, Fieque B, Crastes A, Legras O 2006 Opto-Electronics Review 14 25
[36] Gong Y G, Li W, Cai H H, Li Z, Chen C, Jiang Y D 2009 Chinese Journal of Sensors and Actuators 8 1122 (in Chinese) [龚宇光,李伟,蔡海洪,李志,陈超,蒋亚东 2009 传感技术学报 8 1122]
[37] Soref R A 2002 Proceedings of the IEEE 81 1687
[38] Richards P L 1994 Journal of Applied Physics 76 1
[39] He X, Léonard F, Kono J 2015 Advanced Optical Materials 3 989
[40] Yang Q, Shen J, Wei X Z, Shi H F 2020 Infrared and Laser Engineering 49 23 (in Chinese) [杨旗,申钧,魏兴战,史浩飞 2020 红外与激光工程 49 23]
[41] Gabor N M, Song J C, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo-Herrero P 2011 Science 334 648
[42] Song J C, Tielrooij K J, Koppens F H, Levitov L S 2013 Physical Review B 87 155429
[43] Tielrooij K J, Song J C, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H 2013 Nature Physics 9 248
[44] Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 611
[45] Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Letters 16 8
[46] Fang J, Wang D, DeVault C T, Chung T F, Chen Y P, Boltasseva A, Shalaev V M, Kildishev A V 2017 Nano letters 17 57
[47] Gan X, Shiue R J, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nature photonics 7 883
[48] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nature Photonics 7 892
[49] Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J, Porschatis C, Prinzen A, Matheisen C, Kuebart W, Junginger B, Templ W 2014 Acs Photonics 1 781
[50] Wang X, Cheng Z, Xu K, Tsang H K, Xu J B 2013 Nature Photonics 7 888
[51] Youngblood N, Anugrah Y, Ma R, Koester S J, Li M 2014 Nano letters 14 2741
[52] Ma Z, Yang L, Liu L, Wang S, Peng L M 2020 ACS nano 14 7191
[53] Zhao H, Yang L, Wu W, Cai X, Yang F, Xiu H, Wang Y, Zhang Q, Xin X, Zhang F, Peng L M 2023 ACS nano 17 7466
[54] Zhao H, Yang L, Xiu H, Deng M, Wang Y, Zhang Q 2024 Applied Optics 63 4435
[55] Shiue R J, Gao Y, Wang Y, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H, Hone J, Englund D 2015 Nano letters 15 7288
[56] Wang J, Cheng Z, Chen Z, Wan X, Zhu B, Tsang H K, Shu C, Xu J 2016 Nanoscale 8 13206
[57] Guo J, Li J, Liu C, Yin Y, Wang W, Ni Z, Fu Z, Yu H, Xu Y, Shi Y, Ma Y 2020 Light: Science & Applications 9 29
[58] Marconi S, Giambra M A, Montanaro A, Mišeikis V, Soresi S, Tirelli S, Galli P, Buchali F, Templ W, Coletti C, Sorianello V 2021 Nature communications 12 806
[59] Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, De Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano letters 16 3005
[60] Rieben D, Blatter T, Koepfli S M, Kulmer L, Horst Y, Moor D, Nashashibi S, Homs M, Bisang D, Baumann M, Fedoryshyn Y, Leuthold J 2025 Optical Fiber Communication Conference (OFC 2025) Th3E.4
[61] Muñoz P, Micó G, Bru L A, Pastor D, Pérez D, Doménech J D, Fernández J, Baños R, Gargallo B, Alemany R, Sánchez A M 2017 Sensors 17 2088
[62] Blumenthal D J, Heideman R, Geuzebroek D, Leinse A, Roeloffzen C 2018 Proceedings of the IEEE 106 2209
[63] Bauters J F, Heck M J, John D, Dai D, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E 2011 Optics express 19 3163
[64] Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C 2015 J. Appl. Phys. 117 144504
[65] Ferrari A C, Bonaccorso F, Fal'Ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A 2015 Nanoscale 7 4598
[66] Mišeikis V, Marconi S, Giambra M A, Montanaro A, Martini L, Fabbri F, Pezzini S, Piccinini G, Forti S, Terrés B, Goykhman I 2020 ACS nano 14 11190
[67] Muench J E, Ruocco A, Giambra M A, Miseikis V, Zhang D, Wang J, Watson H F, Park G C, Akhavan S, Sorianello V, Midrio M 2019 Nano letters 19 7632
[68] Gao Y, Tao L, Tsang H K, Shu C 2018 Appl. Phys. Lett. 112 211107
[69] Giambra M A, Mišeikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari A C, Coletti C, Romagnoli M 2021 ACS nano 15 3171
[70] Schuler S, Schall D, Neumaier D, Dobusch L, Bethge O, Schwarz B, Krall M, Mueller T 2016 Nano letters 16 7107
[71] Yan S, Zuo Y, Xiao S, Oxenløwe L K, Ding Y 2022 Opto-Electronic Advances 5 210159
[72] Li T, Mao D, Petrone N W, Grassi R, Hu H, Ding Y, Huang Z, Lo G Q, Hone J C, Low T, Wong C W 2018 npj 2D Materials and Applications 2 36
[73] Goldstein J, Lin H, Deckoff-Jones S, Hempel M, Lu A Y, Richardson K A, Palacios T, Kong J, Hu J, Englund D 2022 Nature Communications 13 3915
[74] Hashemnezhad H, Noori M 2025 Optics & Laser Technology 181 111852
[75] Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Galili M, Hu H, Mortensen N A, Xiao S, Oxenløwe L K 2020 Nanophotonics 9 317
[76] Jian J L, Wu J H, Zhong C Y, Ma H, Sun B S, Ye Y T, Luo Y, Wei M L, Lei K H, Liu R Z, Chen Z Q, Li G Y, Dai H, Tang R J, Sun C L, Li J Y, Li W, Li M, Lin H T, Li L 2023 ACS Photonics 10 3494
[77] Li Z W, Hu S Q, Zhang Q, Tian R J, Gu L P, Zhu Y S, Yuan Q S, Yi R X, Li C, Liu Y, Hao Y, Gan X T, Zhao J L 2022 ACS Photonics 9 282
[78] Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasinski P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R 2024 ACS Applied Materials & Interfaces 16 28874
[79] Youngblood N, Chen C, Koester S J, Li M 2015 Nature photonics 9 247
[80] Yin Y L, Cao R, Guo J S, Liu C Y, Li J, Feng X L, Wang H D, Du W, Qadir A, Zhang H, Ma Y G, Gao S M, Xu Y, Shi Y C, Tong L M, Dai D X 2019 Laser & Photonics Reviews 13 1900032
[81] Huang L, Dong B, Guo X, Chang Y H, Chen N, Huang X, Liao W G, Zhu C X, Wang H, Lee C K, Ang K W 2018 ACS nano 13 913
[82] Pang C, Deng Y H, Kheradmand E, Poonkottil N, Petit R, Elsinger L, Detavernier C, Geiregat P, Hens Z, Thourhout D V 2023 ACS photonics 10 4215
[83] Yang C, Liu Z, Cai H, Li D, Yu Y, Zhang X 2025 ACS nano 19 8661
计量
- 文章访问数: 114
- PDF下载量: 0
- 被引次数: 0