搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波导集成的碳基红外探测器研究进展

吕晓炜 张家振 陈俊宇 刘子卓 赵文超 吴秋诗 徐浩 陈效双

引用本文:
Citation:

波导集成的碳基红外探测器研究进展

吕晓炜, 张家振, 陈俊宇, 刘子卓, 赵文超, 吴秋诗, 徐浩, 陈效双

Research progress of waveguide integrated carbon based infrared detectors

LYU Xiaowei, ZHANG Jiazhen, CHEN Junyu, LIU Zizhuo, ZHAO Wenchao, WU Qiushi, XU Hao, CHEN Xiaoshuang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 碳基材料因其独特且优异的光、热、电、磁、力等物理特性在红外光电探测领域备受关注, 这些特性使其在通信、军事、成像、能源、生物等领域具有广泛的应用前景. 然而, 在面向工程化应用的实际场景中, 碳基材料仍面临诸多挑战, 如富勒烯、石墨烯和单根碳纳米管在红外波段吸收弱、灵敏度不足、响应慢等. 碳基材料与波导集成, 一方面可限域光场, 有效抑制光传输的环境耗散, 提升光与物质的耦合效率, 从而提高探测器的信噪比、灵敏度、响应速度与工作带宽; 另一方面, 其工艺兼容CMOS加工工艺, 有望实现低成本、高密度集成, 可满足下一代红外光电探测器的发展需要. 本文围绕多种波导材料集成的碳基红外光电探测器展开综述, 详细介绍分析了器件的性能增强策略与发展瓶颈, 最后展望了波导集成的碳基红外探测器的发展方向.
    Carbon-based materials, such as graphene and carbon nanotubes (CNTs), have garnered significant attention for next-generation infrared photodetection due to their unique and excellent physical properties, including ultra-high carrier mobility and exceptionally broad spectral absorption. These characteristics present vast application prospects in fields such as optical communications, military sensing, biomedical imaging, and energy. However, a critical bottleneck for their practical application is the inherently weak light-matter interaction stemming from their low-dimensional nature. For example, a single layer of graphene absorbs only 2.3% of incident light, which severely limits the sensitivity and overall performance of photodetectors.To overcome this fundamental limitation, integrating carbon-based materials with photonic waveguides has emerged as a highly effective and promising strategy. This approach confines light within the waveguide and utilizes the evanescent field to couple with the carbon material over a long interaction length, greatly enhancing the total light absorption. Furthermore, its intrinsic compatibility with CMOS fabrication processes paves the way for low-cost, high-density, and large-scale manufacturing, meeting the stringent demands of future optoelectronic systems.This paper comprehensively reviews the latest developments in waveguide-integrated carbon-based infrared photodetectors, systematically summarizing and analyzing the progress made in three major integration aspects: silicon-on-insulator (SOI), silicon nitride (SiNx), and advanced heterostructures such as plasmonic and slot waveguides). Various performance enhancement strategies are detailed by exploring different photodetection mechanisms, including the photovoltaic effect (PVE), photothermoelectric effect (PTE), photobolometric effect (PBE), and internal photoemission effect (IPE). Key breakthroughs are highlighted, such as achieving ultra-high bandwidths exceeding 150 GHz on SOI, realizing a superior balance of high responsivity (~2.36 A/W) and high speed (~33 GHz) on SiNx, and enhancing responsivity to over 600 mA/W while extending the detection range to the mid-infrared (5.2 μm) using advanced heterostructure waveguides.Finally, the current development bottlenecks are discussed, including challenges in material transfer, interface quality control, and thermal management. Future research directions are also suggested, such as the development of novel carbon-based heterostructures, deeper integration with on-chip photonic systems, and the exploration of new waveguide materials for long-wave infrared applications. This work provides a clear roadmap for the continously developing high-performance, waveguide-integrated carbon-based infrared detectors.
  • 图 1  碳原子的几种低维同素异形体, 出自文献[2], 已获得授权

    Fig. 1.  Several low-dimensional allotropes of carbon atoms. Reproduced with permission from Ref.[2].

    图 2  正负PCE原理图, 出自文献[28], 已获得授权

    Fig. 2.  Schematic diagram of positive and negative PCE. Reproduced with permission from Ref. [28].

    图 3  (a) PVE原理示意图; (b) 有无照明下PN结的两个典型IV曲线

    Fig. 3.  (a) Schematic images of PVE; (b) two typical I-V curves of a P–N junction with and without illumination.

    图 4  (a) PBE物理机制的示意图; (b)测辐射热型探测器在有光照和无光照时的I-V曲线图

    Fig. 4.  (a) Schematic diagram of the PBE physical mechanism; (b) plot of I-V curves for a bolometric detector under both illuminated and non-illuminated conditions.

    图 5  (a) PTE结构示意图; (b) PTE原理示意图

    Fig. 5.  (a) Structure schematic diagram of PTE; (b) schematic diagram of PTE principle.

    图 6  (a) 石墨烯微腔光电探测器示意图, 出自文献[24], 已获得授权; (b) F-P微腔集成的单管二极管型光电探测器示意图, 出自文献[14], 已获得授权; (c) 带有等离子体光栅耦合器的金属-石墨烯-金属光电探测器, 出自文献[45], 已获得授权; (d) 基于分形超表面的增强型石墨烯光电探测器, 出自文献[46], 已获得授权

    Fig. 6.  (a) Schematic drawing of a graphene microcavity photodetector, reproduced with permission from Ref.[24]; (b) schematic representation of a single-tube diode-type photodetector integrated with F–P microcavity, reproduced with permission from Ref.[14]; (c) metal-graphene-metal photodetector with plasmonic grating coupler, reproduced with permission from Ref.[45]; (d) enhanced graphene photodetector with fractal metasurface, reproduced with permission from Ref.[46].

    图 7  (a) 非对称接触配置下硅波导上集成的石墨烯光电探测器, 出自文献[49], 已获得授权; (b) 平面化波导上集成的双层石墨烯调制器/探测器的示意图, 出自文献[51], 已获得授权; (c) 波导集成碳纳米管光电二极管结构示意图, 出自文献[52], 已获得授权; (d) 低暗电流、48 GHz带宽的硅波导集成CNT光电探测器, 出自文献[53], 已获得授权; (e) 基于平面化硅波导的高速CNT光电探测器, 出自文献[54], 已获得授权; (f) 埋入硅波导上的hBN/SLG/hBN光电探测器, 出自文献[55], 已获得授权; (g) 高性能硅-石墨烯混合等离激元波导光电探测器的结构, 出自文献[57], 已获得授权; (h) PTE石墨烯光电探测器的3D示意图, 出自文献[58], 已获得授权; (i) 硅-石墨烯等离子体肖特基光电探测器, 出自文献[59], 已获得授权

    Fig. 7.  (a) Graphene photodetector integrated on a silicon waveguide with asymmetric contact configuration, reproduced with permission from Ref.[49]; (b) schematic illustration of the dual layer graphene modulator/detector integrated on a planarized waveguide, reproduced with permission from Ref.[51]; (c) schematic diagram showing the structure of a waveguide-integrated carbon nanotube photodiode, reproduced with permission from Ref.[52]; (d) silicon waveguide-integrated carbon nanotube photodetector with low dark current and 48 GHz bandwidth, reproduced with permission from Ref.[53]; (e) high-speed carbon nanotube photodetector based on a planarized silicon waveguide, reproduced with permission from Ref.[54]; (f) the hBN/SLG/hBN photodetector on a buried silicon waveguide, reproduced with permission from Ref.[55]; (g) structures of the high-performance silicon–graphene hybrid plasmonic waveguide photodetectors, reproduced with permission from Ref.[57]; (h) 3D schematic of the PTE graphene photodetector, reproduced with permission from Ref.[58]; (i) silicon–Graphene plasmonic Schottky photodetector, reproduced with permission from Ref.[59]

    图 8  (a) 波导集成等离子体增强石墨烯光电探测器, 出自文献[66], 已获得授权; (b) 无源光子波导上具有聚合物栅极电介质的超快、零偏压石墨烯光电探测器, 出自文献[65], 已获得授权

    Fig. 8.  (a) Waveguide-integrated, plasmonic enhanced graphene photodetectors, reproduced with permission from Ref.[66]; (b) ultrafast, zero-Bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides, reproduced with permission from Ref.[65].

    图 9  (a) 基于缝隙波导的石墨烯光电探测器, 出自文献[69], 已获得授权; (b) 基于双槽结构的光电探测器, 出自文献[70], 已获得授权; (c) 石墨烯等离子体集成光电探测器, 出自文献[74], 已获得授权; (d) 在可扩展硫系玻璃平台上使用石墨烯进行波导集成, 出自文献[72], 已获得授权

    Fig. 9.  (a) The graphene photodetector based on a slot-waveguide, reproduced with permission from Ref.[69]; (b) graphene photodetector employing double slot structure, reproduced with permission from Ref.[70]; (c) the graphene-plasmonic integrated photodetector, reproduced with permission from Ref.[74]; (d) waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform, reproduced with permission from Ref.[72].

    表 1  集成SOI波导的碳基红外探测器性能比对

    Table 1.  Performance comparison of carbon based infrared detectors with integrated SOI waveguides.

    工作
    机制
    文献 年份 碳基
    材料
    类型 波长/nm 响应率
    /(mA·W–1)
    带宽
    /GHz
    暗电流 创新点
    PVE [47] 2013 石墨烯 机械剥离 1450—1590 108 20 极低(零偏压) 非对称金属电极构建内建电场,
    实现零偏压高速探测
    [48] 2013 石墨烯 机械剥离 1310—1650 30—50 18 极低(零偏压) CMOS兼容工艺, 全波段覆盖
    [50] 2013 石墨烯 机械剥离 1550—2750 130 - 低(异质结抑制) 石墨烯/硅异质结结合悬浮波导,
    将探测范围拓展至2.75 μm
    [51] 2014 石墨烯 湿法转移 1550 57 3 零偏压无暗电流 调制-探测双功能集成
    [49] 2014 石墨烯 湿法转移 1550 7 41 零偏压无暗电流 晶圆级CVD材料+50 Gbit/s链路
    [52] 2020 CNT - 1530 12.5 - <1 nA(@ –0.5 V) 单片集成、零偏压工作、
    光电子系统兼容性作
    [53] 2023 CNT - 1550 73.62 48 0.157 μA(@ –2 V) 电极位置优化、实现高带宽与
    低暗电流的平衡
    [54] 2024 CNT - 1550 51.04 34 0.389 μA(@ –3 V) 波导平面化工艺、热稳定性提升
    PTE [55] 2015 石墨烯 湿法转移 1500—1800 360 42 零偏压无暗电流 hBN封装提升性能+自相关功能
    [56] 2016 石墨烯 湿法转移 1550 273 - 极低 槽波导光场局域化, 悬浮石墨烯
    抑制声子散射
    [57] 2020 石墨烯 湿法转移 1500—2000 400 >40 低偏压下暗电流可控 混合等离子体波导平衡吸收与损耗,
    支持中红外
    [58] 2021 石墨烯 湿法转移 1550 3500 >65 零暗电流 光热效应实现零偏压超高速,
    50 Ω阻抗匹配
    IPE [59] 2016 石墨烯 湿法转移 1550 370 - 等离子体波导增强光吸收, 雪崩增益
    PBE [60] 2025 石墨烯 湿法转移 1550—1640 68—200 155 等离激元谐振增强; 实现155 GHz带
    宽和创纪录的192 GBaud数据传输
    下载: 导出CSV

    表 2  集成SiNx波导的碳基红外探测器性能比对

    Table 2.  Performance comparison of carbon-based infrared detectors integrated with SiNx waveguides.

    工作机制文献年份碳基材料类型波长/nm响应率带宽/GHz暗电流创新点
    PTE(零偏压)+
    PBE(偏压)
    [64]2015石墨烯湿法转移1550126 mA/W--实现氮化硅波导集成石墨烯探测器,
    CMOS兼容性
    PVE(零偏压)+
    PBE(偏压)
    [67]2018石墨烯湿法转移15502.36 A/W3320 μA叉指电极减小载流子传输距离,
    实现高响应率与高带宽
    PTE[66]2019石墨烯湿法转移1500-160012.2 V/W42零暗电流等离子体波导增强光吸收,
    零偏压高响应率与高带宽
    [65]2020石墨烯湿法转移15506 V/W67零暗电流零偏置操作、聚合物介电优化、
    超高带宽
    下载: 导出CSV

    表 3  集成先进异质结构波导的碳基红外探测器性能比对

    Table 3.  Performance comparison of carbon based infrared detectors integrated with advanced heterostructure waveguides.

    工作
    机制
    文献年份碳基材料类型波长/nm响应率带宽/GHz暗电流创新点
    PTE[69]2016石墨烯机械剥离155035 mA/W65实现石墨烯PN结与硅波导集成,
    突破性提升带宽
    [72]2022石墨烯湿法转移52010 mA/W(零偏压),
    1.5 V/W(偏压)
    >1较高硫系玻璃波导扩展至中红外,
    分裂栅PN结
    PVE[71]2018石墨烯湿法转移400—160011 mA/W>50零偏压下
    可忽略
    石墨烯-P-I-N异质结结合光子晶体波导
    [74]2020石墨烯湿法转移1550360 mA/W>110-等离子体超强光限制,
    超短载流子路径
    [70]2022石墨烯湿法转移1550603.92 mA/W78-双槽结构平衡光吸收与金属损耗
    下载: 导出CSV
  • [1]

    Weiss N O, Zhou H L, Liao, L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Richter M, Heumüller T, Matt G J, Heiss W, Brabe C J 2017 Adv. Energy Mater. 7 1601574Google Scholar

    [4]

    Cheng Z P, Li Z P, Li M Y, Wen X Y, Ding X M, Xu H, Lee J, Lu H F, Liu S S 2024 J. Mater. Chem. A 12 1685Google Scholar

    [5]

    Na W, Zhang J, Cui F, Li X, Shen K, Wu J, Zou G, Xu H 2024 24th International Conference on Transparent Optical Networks, Italy, Jul 14-18, 2024 p1

    [6]

    Lin Q H, Zhao C X, Li M Y, Xu H 2024 Chemosensors 12 255Google Scholar

    [7]

    Li X, Dai X, Xu H, Shen K, Guo J, Li C, Zou G, Choy K L, Parkin I P, Guo Z X, Liu H Y, Wu J 2021 Sci. Chin. Mater. 64 1964Google Scholar

    [8]

    Xu H, Han X Y, Dai X, Liu W, Wu J, Zhu J T, Kim D Y, Zou G F, Sablon K A, Sergeev A S, Guo Z X 2018 Adv. Mater. 30 1706561Google Scholar

    [9]

    Itkis M E, Borondics F, Yu A, Haddon R C 2006 Science 312 413Google Scholar

    [10]

    St-Antoine B C, Ménard D, Martel R 2011 Nano Lett. 11 609Google Scholar

    [11]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839Google Scholar

    [12]

    Mueller T, Xia F N, Avouris P 2010 Nat. Photonics 4 297Google Scholar

    [13]

    Yang Q R, Zhang C, Wu S L, Li S J, Bao Q L, Giannini V, Maier S A, Li X F 2018 Nano Energy 48 161Google Scholar

    [14]

    Liang S, Ma Z, Wu G T, Wei N, Huang L, Huang H X, Liu H P, Wang S, Peng L M 2016 ACS Nano 10 6963Google Scholar

    [15]

    Cao X X, Peng L, Liu L X, Lv J H, Li Z W, Tian F, Dong Y F, Liu X Y, Shen Y, Sun H Y, Xu Y, Fang W Z, Gao C 2022 Carbon 198 244Google Scholar

    [16]

    Jin Y H, Zhang T F, Zhao J, Zhao Y X, Liu C, Song J, Hao X P, Wang J P, Jiang K L, Fan S S, Li Q Q 2021 Carbon 178 616Google Scholar

    [17]

    Bosnick K, Gabo N, McEuen P 2006 Appl. Phys. Lett. 89 163121Google Scholar

    [18]

    Lee J U, Gipp P P, Heller C M 2004 Appl. Phys. Lett. 85 145Google Scholar

    [19]

    Liu Y, Han J, Wei N, Qiu S, Li H B, Li Q W, Wang S, Peng L M 2016 Nanoscale 8 17122Google Scholar

    [20]

    Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J 2008 Nano Lett. 8 1142Google Scholar

    [21]

    Park S, Kim S J, Nam J H, Pitner G, Lee T H, Ayzner A L, Wang H, Fong S W, Vosgueritchian M, Park Y J, Brongersma M L, Bao Z 2014 Adv. Mater. 27 759

    [22]

    Arnold M S, Zimmerman J D, Renshaw C K, Xu X, Lunt R R, Austin C M, Forrest S R 2009 Nano Lett. 9 3354Google Scholar

    [23]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458Google Scholar

    [24]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773Google Scholar

    [25]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer F P, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363Google Scholar

    [26]

    Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar

    [27]

    Koester S J, Li M 2013 IEEE J. Sel. Top. Quantum Electron. 20 84

    [28]

    Tailor N K, Aranda C A, Saliba M, Satapathi S 2022 ACS Mater. Lett. 4 2298Google Scholar

    [29]

    Long M S, Wang P, Fang H H, Hu W D 2019 Adv. Funct. Mater. 29 1803807Google Scholar

    [30]

    Xu J Y, Zhang Z L, Zhang W, Chen Z S 2024 Processes 12 1728Google Scholar

    [31]

    Periyanagounder D, Gnanasekar P, Varadhan P, He J H, Kulandaivel J 2018 J. Mater. Chem. C 6 9545Google Scholar

    [32]

    Cai X, Wang S, Peng L M 2023 Nano Res. Energy 2 e9120058Google Scholar

    [33]

    Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano Lett. 14 6109Google Scholar

    [34]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [35]

    Tissot J L, Trouilleau C, Fieque B, Crastes A, Legras O 2006 Opto-Electron. Rev. 14 25

    [36]

    龚宇光, 李伟, 蔡海洪, 李志, 陈超, 蒋亚东 2009 传感技术学报 22 1122Google Scholar

    Gong Y G, Li W, Cai H H, Li Z, Chen C, Jiang Y D 2009 Chin. J. Sens. Actuators 22 1122Google Scholar

    [37]

    Soref R A 2002 Proc. IEEE 81 1687

    [38]

    Richards P L 1994 J. Appl. Phys. 76 1Google Scholar

    [39]

    He X W, Léonard F, Kono J 2015 Adv. Opt. Mater. 3 989Google Scholar

    [40]

    杨旗, 申钧, 魏兴战, 史浩飞 2020 红外与激光工程 49 0103003

    Yang Q, Shen J, Wei X Z, Shi H F 2020 Infrared Laser Eng. 49 0103003

    [41]

    Gabor N M, Song J C, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo-Herrero P 2011 Science 334 648Google Scholar

    [42]

    Song J C, Tielrooij K J, Koppens F H, Levitov L S 2013 Phys. Rev. B 87 155429Google Scholar

    [43]

    Tielrooij K J, Song J C, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H 2013 Nat. Phys. 9 248Google Scholar

    [44]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 611

    [45]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar

    [46]

    Fang J R, Wang D, DeVault C T, Chung T F, Chen Y P, Boltasseva A, Shalaev V M, Kildishev A V 2017 Nano Lett. 17 57Google Scholar

    [47]

    Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photonics 7 883Google Scholar

    [48]

    Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nat. Photonics 7 892Google Scholar

    [49]

    Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J, Porschatis C, Prinzen A, Matheisen C, Kuebart W, Junginger B, Templ W, Giesecke A L, Kurz H 2014 ACS Photonics 1 781Google Scholar

    [50]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888Google Scholar

    [51]

    Youngblood N, Anugrah Y, Ma R, Koester S J, Li M 2014 Nano Lett. 14 2741Google Scholar

    [52]

    Ma Z, Yang L, Liu L J, Wang S, Peng L M 2020 ACS Nano 14 7191Google Scholar

    [53]

    Zhao H Y, Yang L J, Wu W F, Cai X, Yang F, Xiu H J, Wang Y J, Zhang Q, Xin X J, Zhang F, Peng L M, Wang S 2023 ACS Nano 17 7466Google Scholar

    [54]

    Zhao H Y, Yang L J, Xiu H J, Deng M, Wang Y J, Zhang Q 2024 Appl. Opt. 63 4435Google Scholar

    [55]

    Shiue R J, Gao Y D, Wang Y F, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H, Hone J, Englund D 2015 Nano Lett. 15 7288Google Scholar

    [56]

    Wang J Q, Cheng Z Z, Chen Z F, Wan X, Zhu B Q, Tsang H K, Shu C, Xu J B 2016 Nanoscale 8 13206Google Scholar

    [57]

    Guo J S, Li J, Liu C Y, Yin Y L, Wang W H, Ni Z H, Fu Z L, Yu H, Xu Y, Shi Y C, Ma Y G, Gao S M, Tong L M, Dai D X 2020 Light: Sci. Appl. 9 29Google Scholar

    [58]

    Marconi S, Giambra M A, Montanaro A, Mišeikis V, Soresi S, Tirelli S, Galli P, Buchali F, Templ W, Coletti C, Sorianello V, Romagnoli M 2021 Nat. Commun. 12 806Google Scholar

    [59]

    Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, De Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano Lett. 16 3005Google Scholar

    [60]

    Rieben D, Blatter T, Koepfli S M, Kulmer L, Horst Y, Moor D, Nashashibi S, Homs M, Bisang D, Baumann M, Fedoryshyn Y, Leuthold J 2025 Optical Fiber Communication Conference (OFC 2025) Th3E. 4

    [61]

    Muñoz P, Micó G, Bru L A, Pastor D, Pérez D, Doménech J D, Fernández J, Baños R, Gargallo B, Alemany R, Sánchez A M, Cirera J M, Mas R, Domínguez C 2017 Sensors 17 2088Google Scholar

    [62]

    Blumenthal D J, Heideman R, Geuzebroek D, Leinse A, Roeloffzen C 2018 Proc. IEEE 106 2209Google Scholar

    [63]

    Bauters J F, Heck M J, John D, Dai D X, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E 2011 Opt. Express 19 3163Google Scholar

    [64]

    Wang J Q, Cheng Z Z, Chen Z F, Xu J B, Tsang H K, Shu C 2015 J. Appl. Phys. 117 144504Google Scholar

    [65]

    Mišeikis V, Marconi S, Giambra M A, Montanaro A, Martini L, Fabbri F, Pezzini S, Piccinini G, Forti S, Terrés B, Goykhman I, Hamidouche L, Legagneux P, Sorianello V, Ferrari A C, Koppens F H, Romagnoli M, Coletti C 2020 ACS Nano 14 11190Google Scholar

    [66]

    Muench J E, Ruocco A, Giambra M A, Miseikis V, Zhang D K, Wang J J, Watson H F, Park G C, Akhavan S, Sorianello V, Midrio M, Tomadin A, Coletti C, Romagnoli M, Ferrari A C, Goykhman I 2019 Nano Lett. 19 7632Google Scholar

    [67]

    Gao Y, Tao L, Tsang H K, Shu C 2018 Appl. Phys. Lett. 112 211107Google Scholar

    [68]

    Giambra M A, Mišeikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari A C, Coletti C, Romagnoli M 2021 ACS Nano 15 3171Google Scholar

    [69]

    Schuler S, Schall D, Neumaier D, Dobusch L, Bethge O, Schwarz B, Krall M, Mueller T 2016 Nano Lett. 16 7107Google Scholar

    [70]

    Yan S Q, Zuo Y, Xiao S S, Oxenløwe L K, Ding Y H 2022 Opto-Electron. Adv. 5 210159Google Scholar

    [71]

    Li T T, Mao D, Petrone N W, Grassi R, Hu H, Ding Y H, Huang Z H, Lo G Q, Hone J C, Low T, Wong C W, Gu T Y 2018 npj 2D Mater. Appl. 2 36

    [72]

    Goldstein J, Lin H T, Deckoff-Jones S, Hempel M, Lu A Y, Richardson K A, Palacios T, Kong J, Hu J J, Englund D 2022 Nat. Commun. 13 3915Google Scholar

    [73]

    Hashemnezhad H, Noori M 2025 Opt. Laser Technol. 181 111852Google Scholar

    [74]

    Ding Y H, Cheng Z, Zhu X L, Yvind K, Dong J J, Galili M, Galili M, Hu H, Mortensen N A, Xiao S S, Oxenløwe L K 2020 Nanophotonics 9 317Google Scholar

    [75]

    Jian J L, Wu J H, Zhong C Y, Ma H, Sun B S, Ye Y T, Luo Y, Wei M L, Lei K H, Liu R Z, Chen Z Q, Li G Y, Dai H, Tang R J, Sun C L, Li J Y, Li W, Li M, Lin H T, Li L 2023 ACS Photonics 10 3494Google Scholar

    [76]

    Li Z W, Hu S Q, Zhang Q, Tian R J, Gu L P, Zhu Y S, Yuan Q S, Yi R X, Li C, Liu Y, Hao Y, Gan X T, Zhao J L 2022 ACS Photonics 9 282

    [77]

    Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasinski P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R 2024 ACS Appl. Mater. Interfaces 16 28874Google Scholar

    [78]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [79]

    Yin Y L, Cao R, Guo J S, Liu C Y, Li J, Feng X L, Wang H D, Du W, Qadir A, Zhang H, Ma Y G, Gao S M, Xu Y, Shi Y C, Tong L M, Dai D X 2019 Laser Photonics Rev. 13 1900032Google Scholar

    [80]

    Huang L, Dong B, Guo X, Chang Y H, Chen N, Huang X, Liao W G, Zhu C X, Wang H, Lee C K, Ang K W 2018 ACS Nano 13 913

    [81]

    Pang C, Deng Y H, Kheradmand E, Poonkottil N, Petit R, Elsinger L, Detavernier C, Geiregat P, Hens Z, Thourhout D V 2023 ACS Photonics 10 4215Google Scholar

    [82]

    Yang C M, Liu Z Y, Cai H J, Li D H, Yu Y, Zhang X L 2025 ACS Nano 19 8661Google Scholar

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, doi: 10.7498/aps.73.20240489
    [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, doi: 10.7498/aps.73.20231657
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, doi: 10.7498/aps.72.20221253
    [4] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, doi: 10.7498/aps.72.20221564
    [5] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, doi: 10.7498/aps.71.20220380
    [6] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, doi: 10.7498/aps.71.20212203
    [7] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, doi: 10.7498/aps.70.20201943
    [8] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, doi: 10.7498/aps.68.20182090
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [10] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, doi: 10.7498/aps.67.20180125
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, doi: 10.7498/aps.67.20180114
    [12] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, doi: 10.7498/aps.67.20180196
    [13] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, doi: 10.7498/aps.67.20180036
    [14] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, doi: 10.7498/aps.67.20172016
    [15] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [16] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, doi: 10.7498/aps.67.20180307
    [17] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, doi: 10.7498/aps.66.218501
    [18] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, doi: 10.7498/aps.60.107202
    [19] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, doi: 10.7498/aps.54.848
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, doi: 10.7498/aps.50.450
计量
  • 文章访问数:  315
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 修回日期:  2025-08-12
  • 上网日期:  2025-09-02

/

返回文章
返回