-
碳基材料因其独特且优异的光、热、电、磁、力等物理特性在红外光电探测领域备受关注, 这些特性使其在通信、军事、成像、能源、生物等领域具有广泛的应用前景. 然而, 在面向工程化应用的实际场景中, 碳基材料仍面临诸多挑战, 如富勒烯、石墨烯和单根碳纳米管在红外波段吸收弱、灵敏度不足、响应慢等. 碳基材料与波导集成, 一方面可限域光场, 有效抑制光传输的环境耗散, 提升光与物质的耦合效率, 从而提高探测器的信噪比、灵敏度、响应速度与工作带宽; 另一方面, 其工艺兼容CMOS加工工艺, 有望实现低成本、高密度集成, 可满足下一代红外光电探测器的发展需要. 本文围绕多种波导材料集成的碳基红外光电探测器展开综述, 详细介绍分析了器件的性能增强策略与发展瓶颈, 最后展望了波导集成的碳基红外探测器的发展方向.
Carbon-based materials, such as graphene and carbon nanotubes (CNTs), have garnered significant attention for next-generation infrared photodetection due to their unique and excellent physical properties, including ultra-high carrier mobility and exceptionally broad spectral absorption. These characteristics present vast application prospects in fields such as optical communications, military sensing, biomedical imaging, and energy. However, a critical bottleneck for their practical application is the inherently weak light-matter interaction stemming from their low-dimensional nature. For example, a single layer of graphene absorbs only 2.3% of incident light, which severely limits the sensitivity and overall performance of photodetectors. To overcome this fundamental limitation, integrating carbon-based materials with photonic waveguides has emerged as a highly effective and promising strategy. This approach confines light within the waveguide and utilizes the evanescent field to couple with the carbon material over a long interaction length, greatly enhancing the total light absorption. Furthermore, its intrinsic compatibility with CMOS fabrication processes paves the way for low-cost, high-density, and large-scale manufacturing, meeting the stringent demands of future optoelectronic systems. This paper comprehensively reviews the latest developments in waveguide-integrated carbon-based infrared photodetectors, systematically summarizing and analyzing the progress made in three major integration aspects: silicon-on-insulator (SOI), silicon nitride (SiNx), and advanced heterostructures such as plasmonic and slot waveguides). Various performance enhancement strategies are detailed by exploring different photodetection mechanisms, including the photovoltaic effect (PVE), photothermoelectric effect (PTE), photobolometric effect (PBE), and internal photoemission effect (IPE). Key breakthroughs are highlighted, such as achieving ultra-high bandwidths exceeding 150 GHz on SOI, realizing a superior balance of high responsivity (~2.36 A/W) and high speed (~33 GHz) on SiNx, and enhancing responsivity to over 600 mA/W while extending the detection range to the mid-infrared (5.2 μm) using advanced heterostructure waveguides. Finally, the current development bottlenecks are discussed, including challenges in material transfer, interface quality control, and thermal management. Future research directions are also suggested, such as the development of novel carbon-based heterostructures, deeper integration with on-chip photonic systems, and the exploration of new waveguide materials for long-wave infrared applications. This work provides a clear roadmap for the continously developing high-performance, waveguide-integrated carbon-based infrared detectors. -
Keywords:
- carbon-based materials /
- graphene /
- waveguide integration /
- infrared detector
-
图 6 (a) 石墨烯微腔光电探测器示意图, 出自文献[24], 已获得授权; (b) F-P微腔集成的单管二极管型光电探测器示意图, 出自文献[14], 已获得授权; (c) 带有等离子体光栅耦合器的金属-石墨烯-金属光电探测器, 出自文献[45], 已获得授权; (d) 基于分形超表面的增强型石墨烯光电探测器, 出自文献[46], 已获得授权
Fig. 6. (a) Schematic drawing of a graphene microcavity photodetector, reproduced with permission from Ref.[24]; (b) schematic representation of a single-tube diode-type photodetector integrated with F–P microcavity, reproduced with permission from Ref.[14]; (c) metal-graphene-metal photodetector with plasmonic grating coupler, reproduced with permission from Ref.[45]; (d) enhanced graphene photodetector with fractal metasurface, reproduced with permission from Ref.[46].
图 7 (a) 非对称接触配置下硅波导上集成的石墨烯光电探测器, 出自文献[49], 已获得授权; (b) 平面化波导上集成的双层石墨烯调制器/探测器的示意图, 出自文献[51], 已获得授权; (c) 波导集成碳纳米管光电二极管结构示意图, 出自文献[52], 已获得授权; (d) 低暗电流、48 GHz带宽的硅波导集成CNT光电探测器, 出自文献[53], 已获得授权; (e) 基于平面化硅波导的高速CNT光电探测器, 出自文献[54], 已获得授权; (f) 埋入硅波导上的hBN/SLG/hBN光电探测器, 出自文献[55], 已获得授权; (g) 高性能硅-石墨烯混合等离激元波导光电探测器的结构, 出自文献[57], 已获得授权; (h) PTE石墨烯光电探测器的3D示意图, 出自文献[58], 已获得授权; (i) 硅-石墨烯等离子体肖特基光电探测器, 出自文献[59], 已获得授权
Fig. 7. (a) Graphene photodetector integrated on a silicon waveguide with asymmetric contact configuration, reproduced with permission from Ref.[49]; (b) schematic illustration of the dual layer graphene modulator/detector integrated on a planarized waveguide, reproduced with permission from Ref.[51]; (c) schematic diagram showing the structure of a waveguide-integrated carbon nanotube photodiode, reproduced with permission from Ref.[52]; (d) silicon waveguide-integrated carbon nanotube photodetector with low dark current and 48 GHz bandwidth, reproduced with permission from Ref.[53]; (e) high-speed carbon nanotube photodetector based on a planarized silicon waveguide, reproduced with permission from Ref.[54]; (f) the hBN/SLG/hBN photodetector on a buried silicon waveguide, reproduced with permission from Ref.[55]; (g) structures of the high-performance silicon–graphene hybrid plasmonic waveguide photodetectors, reproduced with permission from Ref.[57]; (h) 3D schematic of the PTE graphene photodetector, reproduced with permission from Ref.[58]; (i) silicon–Graphene plasmonic Schottky photodetector, reproduced with permission from Ref.[59]
图 8 (a) 波导集成等离子体增强石墨烯光电探测器, 出自文献[66], 已获得授权; (b) 无源光子波导上具有聚合物栅极电介质的超快、零偏压石墨烯光电探测器, 出自文献[65], 已获得授权
Fig. 8. (a) Waveguide-integrated, plasmonic enhanced graphene photodetectors, reproduced with permission from Ref.[66]; (b) ultrafast, zero-Bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides, reproduced with permission from Ref.[65].
图 9 (a) 基于缝隙波导的石墨烯光电探测器, 出自文献[69], 已获得授权; (b) 基于双槽结构的光电探测器, 出自文献[70], 已获得授权; (c) 石墨烯等离子体集成光电探测器, 出自文献[74], 已获得授权; (d) 在可扩展硫系玻璃平台上使用石墨烯进行波导集成, 出自文献[72], 已获得授权
Fig. 9. (a) The graphene photodetector based on a slot-waveguide, reproduced with permission from Ref.[69]; (b) graphene photodetector employing double slot structure, reproduced with permission from Ref.[70]; (c) the graphene-plasmonic integrated photodetector, reproduced with permission from Ref.[74]; (d) waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform, reproduced with permission from Ref.[72].
表 1 集成SOI波导的碳基红外探测器性能比对
Table 1. Performance comparison of carbon based infrared detectors with integrated SOI waveguides.
工作
机制文献 年份 碳基
材料类型 波长/nm 响应率
/(mA·W–1)带宽
/GHz暗电流 创新点 PVE [47] 2013 石墨烯 机械剥离 1450—1590 108 20 极低(零偏压) 非对称金属电极构建内建电场,
实现零偏压高速探测[48] 2013 石墨烯 机械剥离 1310—1650 30—50 18 极低(零偏压) CMOS兼容工艺, 全波段覆盖 [50] 2013 石墨烯 机械剥离 1550—2750 130 - 低(异质结抑制) 石墨烯/硅异质结结合悬浮波导,
将探测范围拓展至2.75 μm[51] 2014 石墨烯 湿法转移 1550 57 3 零偏压无暗电流 调制-探测双功能集成 [49] 2014 石墨烯 湿法转移 1550 7 41 零偏压无暗电流 晶圆级CVD材料+50 Gbit/s链路 [52] 2020 CNT - 1530 12.5 - <1 nA(@ –0.5 V) 单片集成、零偏压工作、
光电子系统兼容性作[53] 2023 CNT - 1550 73.62 48 0.157 μA(@ –2 V) 电极位置优化、实现高带宽与
低暗电流的平衡[54] 2024 CNT - 1550 51.04 34 0.389 μA(@ –3 V) 波导平面化工艺、热稳定性提升 PTE [55] 2015 石墨烯 湿法转移 1500—1800 360 42 零偏压无暗电流 hBN封装提升性能+自相关功能 [56] 2016 石墨烯 湿法转移 1550 273 - 极低 槽波导光场局域化, 悬浮石墨烯
抑制声子散射[57] 2020 石墨烯 湿法转移 1500—2000 400 >40 低偏压下暗电流可控 混合等离子体波导平衡吸收与损耗,
支持中红外[58] 2021 石墨烯 湿法转移 1550 3500 >65 零暗电流 光热效应实现零偏压超高速,
50 Ω阻抗匹配IPE [59] 2016 石墨烯 湿法转移 1550 370 - 低 等离子体波导增强光吸收, 雪崩增益 PBE [60] 2025 石墨烯 湿法转移 1550—1640 68—200 155 低 等离激元谐振增强; 实现155 GHz带
宽和创纪录的192 GBaud数据传输表 2 集成SiNx波导的碳基红外探测器性能比对
Table 2. Performance comparison of carbon-based infrared detectors integrated with SiNx waveguides.
表 3 集成先进异质结构波导的碳基红外探测器性能比对
Table 3. Performance comparison of carbon based infrared detectors integrated with advanced heterostructure waveguides.
工作
机制文献 年份 碳基材料 类型 波长/nm 响应率 带宽/GHz 暗电流 创新点 PTE [69] 2016 石墨烯 机械剥离 1550 35 mA/W 65 无 实现石墨烯PN结与硅波导集成,
突破性提升带宽[72] 2022 石墨烯 湿法转移 520 10 mA/W(零偏压),
1.5 V/W(偏压)>1 较高 硫系玻璃波导扩展至中红外,
分裂栅PN结PVE [71] 2018 石墨烯 湿法转移 400—1600 11 mA/W >50 零偏压下
可忽略石墨烯-P-I-N异质结结合光子晶体波导 [74] 2020 石墨烯 湿法转移 1550 360 mA/W >110 - 等离子体超强光限制,
超短载流子路径[70] 2022 石墨烯 湿法转移 1550 603.92 mA/W 78 - 双槽结构平衡光吸收与金属损耗 -
[1] Weiss N O, Zhou H L, Liao, L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782
Google Scholar
[2] Castro Neto A H, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[3] Richter M, Heumüller T, Matt G J, Heiss W, Brabe C J 2017 Adv. Energy Mater. 7 1601574
Google Scholar
[4] Cheng Z P, Li Z P, Li M Y, Wen X Y, Ding X M, Xu H, Lee J, Lu H F, Liu S S 2024 J. Mater. Chem. A 12 1685
Google Scholar
[5] Na W, Zhang J, Cui F, Li X, Shen K, Wu J, Zou G, Xu H 2024 24th International Conference on Transparent Optical Networks, Italy, Jul 14-18, 2024 p1
[6] Lin Q H, Zhao C X, Li M Y, Xu H 2024 Chemosensors 12 255
Google Scholar
[7] Li X, Dai X, Xu H, Shen K, Guo J, Li C, Zou G, Choy K L, Parkin I P, Guo Z X, Liu H Y, Wu J 2021 Sci. Chin. Mater. 64 1964
Google Scholar
[8] Xu H, Han X Y, Dai X, Liu W, Wu J, Zhu J T, Kim D Y, Zou G F, Sablon K A, Sergeev A S, Guo Z X 2018 Adv. Mater. 30 1706561
Google Scholar
[9] Itkis M E, Borondics F, Yu A, Haddon R C 2006 Science 312 413
Google Scholar
[10] St-Antoine B C, Ménard D, Martel R 2011 Nano Lett. 11 609
Google Scholar
[11] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839
Google Scholar
[12] Mueller T, Xia F N, Avouris P 2010 Nat. Photonics 4 297
Google Scholar
[13] Yang Q R, Zhang C, Wu S L, Li S J, Bao Q L, Giannini V, Maier S A, Li X F 2018 Nano Energy 48 161
Google Scholar
[14] Liang S, Ma Z, Wu G T, Wei N, Huang L, Huang H X, Liu H P, Wang S, Peng L M 2016 ACS Nano 10 6963
Google Scholar
[15] Cao X X, Peng L, Liu L X, Lv J H, Li Z W, Tian F, Dong Y F, Liu X Y, Shen Y, Sun H Y, Xu Y, Fang W Z, Gao C 2022 Carbon 198 244
Google Scholar
[16] Jin Y H, Zhang T F, Zhao J, Zhao Y X, Liu C, Song J, Hao X P, Wang J P, Jiang K L, Fan S S, Li Q Q 2021 Carbon 178 616
Google Scholar
[17] Bosnick K, Gabo N, McEuen P 2006 Appl. Phys. Lett. 89 163121
Google Scholar
[18] Lee J U, Gipp P P, Heller C M 2004 Appl. Phys. Lett. 85 145
Google Scholar
[19] Liu Y, Han J, Wei N, Qiu S, Li H B, Li Q W, Wang S, Peng L M 2016 Nanoscale 8 17122
Google Scholar
[20] Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J 2008 Nano Lett. 8 1142
Google Scholar
[21] Park S, Kim S J, Nam J H, Pitner G, Lee T H, Ayzner A L, Wang H, Fong S W, Vosgueritchian M, Park Y J, Brongersma M L, Bao Z 2014 Adv. Mater. 27 759
[22] Arnold M S, Zimmerman J D, Renshaw C K, Xu X, Lunt R R, Austin C M, Forrest S R 2009 Nano Lett. 9 3354
Google Scholar
[23] Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458
Google Scholar
[24] Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773
Google Scholar
[25] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer F P, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363
Google Scholar
[26] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273
Google Scholar
[27] Koester S J, Li M 2013 IEEE J. Sel. Top. Quantum Electron. 20 84
[28] Tailor N K, Aranda C A, Saliba M, Satapathi S 2022 ACS Mater. Lett. 4 2298
Google Scholar
[29] Long M S, Wang P, Fang H H, Hu W D 2019 Adv. Funct. Mater. 29 1803807
Google Scholar
[30] Xu J Y, Zhang Z L, Zhang W, Chen Z S 2024 Processes 12 1728
Google Scholar
[31] Periyanagounder D, Gnanasekar P, Varadhan P, He J H, Kulandaivel J 2018 J. Mater. Chem. C 6 9545
Google Scholar
[32] Cai X, Wang S, Peng L M 2023 Nano Res. Energy 2 e9120058
Google Scholar
[33] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano Lett. 14 6109
Google Scholar
[34] Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780
Google Scholar
[35] Tissot J L, Trouilleau C, Fieque B, Crastes A, Legras O 2006 Opto-Electron. Rev. 14 25
[36] 龚宇光, 李伟, 蔡海洪, 李志, 陈超, 蒋亚东 2009 传感技术学报 22 1122
Google Scholar
Gong Y G, Li W, Cai H H, Li Z, Chen C, Jiang Y D 2009 Chin. J. Sens. Actuators 22 1122
Google Scholar
[37] Soref R A 2002 Proc. IEEE 81 1687
[38] Richards P L 1994 J. Appl. Phys. 76 1
Google Scholar
[39] He X W, Léonard F, Kono J 2015 Adv. Opt. Mater. 3 989
Google Scholar
[40] 杨旗, 申钧, 魏兴战, 史浩飞 2020 红外与激光工程 49 0103003
Yang Q, Shen J, Wei X Z, Shi H F 2020 Infrared Laser Eng. 49 0103003
[41] Gabor N M, Song J C, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo-Herrero P 2011 Science 334 648
Google Scholar
[42] Song J C, Tielrooij K J, Koppens F H, Levitov L S 2013 Phys. Rev. B 87 155429
Google Scholar
[43] Tielrooij K J, Song J C, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H 2013 Nat. Phys. 9 248
Google Scholar
[44] Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 611
[45] Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8
Google Scholar
[46] Fang J R, Wang D, DeVault C T, Chung T F, Chen Y P, Boltasseva A, Shalaev V M, Kildishev A V 2017 Nano Lett. 17 57
Google Scholar
[47] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photonics 7 883
Google Scholar
[48] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nat. Photonics 7 892
Google Scholar
[49] Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J, Porschatis C, Prinzen A, Matheisen C, Kuebart W, Junginger B, Templ W, Giesecke A L, Kurz H 2014 ACS Photonics 1 781
Google Scholar
[50] Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888
Google Scholar
[51] Youngblood N, Anugrah Y, Ma R, Koester S J, Li M 2014 Nano Lett. 14 2741
Google Scholar
[52] Ma Z, Yang L, Liu L J, Wang S, Peng L M 2020 ACS Nano 14 7191
Google Scholar
[53] Zhao H Y, Yang L J, Wu W F, Cai X, Yang F, Xiu H J, Wang Y J, Zhang Q, Xin X J, Zhang F, Peng L M, Wang S 2023 ACS Nano 17 7466
Google Scholar
[54] Zhao H Y, Yang L J, Xiu H J, Deng M, Wang Y J, Zhang Q 2024 Appl. Opt. 63 4435
Google Scholar
[55] Shiue R J, Gao Y D, Wang Y F, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H, Hone J, Englund D 2015 Nano Lett. 15 7288
Google Scholar
[56] Wang J Q, Cheng Z Z, Chen Z F, Wan X, Zhu B Q, Tsang H K, Shu C, Xu J B 2016 Nanoscale 8 13206
Google Scholar
[57] Guo J S, Li J, Liu C Y, Yin Y L, Wang W H, Ni Z H, Fu Z L, Yu H, Xu Y, Shi Y C, Ma Y G, Gao S M, Tong L M, Dai D X 2020 Light: Sci. Appl. 9 29
Google Scholar
[58] Marconi S, Giambra M A, Montanaro A, Mišeikis V, Soresi S, Tirelli S, Galli P, Buchali F, Templ W, Coletti C, Sorianello V, Romagnoli M 2021 Nat. Commun. 12 806
Google Scholar
[59] Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, De Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano Lett. 16 3005
Google Scholar
[60] Rieben D, Blatter T, Koepfli S M, Kulmer L, Horst Y, Moor D, Nashashibi S, Homs M, Bisang D, Baumann M, Fedoryshyn Y, Leuthold J 2025 Optical Fiber Communication Conference (OFC 2025) Th3E. 4
[61] Muñoz P, Micó G, Bru L A, Pastor D, Pérez D, Doménech J D, Fernández J, Baños R, Gargallo B, Alemany R, Sánchez A M, Cirera J M, Mas R, Domínguez C 2017 Sensors 17 2088
Google Scholar
[62] Blumenthal D J, Heideman R, Geuzebroek D, Leinse A, Roeloffzen C 2018 Proc. IEEE 106 2209
Google Scholar
[63] Bauters J F, Heck M J, John D, Dai D X, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E 2011 Opt. Express 19 3163
Google Scholar
[64] Wang J Q, Cheng Z Z, Chen Z F, Xu J B, Tsang H K, Shu C 2015 J. Appl. Phys. 117 144504
Google Scholar
[65] Mišeikis V, Marconi S, Giambra M A, Montanaro A, Martini L, Fabbri F, Pezzini S, Piccinini G, Forti S, Terrés B, Goykhman I, Hamidouche L, Legagneux P, Sorianello V, Ferrari A C, Koppens F H, Romagnoli M, Coletti C 2020 ACS Nano 14 11190
Google Scholar
[66] Muench J E, Ruocco A, Giambra M A, Miseikis V, Zhang D K, Wang J J, Watson H F, Park G C, Akhavan S, Sorianello V, Midrio M, Tomadin A, Coletti C, Romagnoli M, Ferrari A C, Goykhman I 2019 Nano Lett. 19 7632
Google Scholar
[67] Gao Y, Tao L, Tsang H K, Shu C 2018 Appl. Phys. Lett. 112 211107
Google Scholar
[68] Giambra M A, Mišeikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari A C, Coletti C, Romagnoli M 2021 ACS Nano 15 3171
Google Scholar
[69] Schuler S, Schall D, Neumaier D, Dobusch L, Bethge O, Schwarz B, Krall M, Mueller T 2016 Nano Lett. 16 7107
Google Scholar
[70] Yan S Q, Zuo Y, Xiao S S, Oxenløwe L K, Ding Y H 2022 Opto-Electron. Adv. 5 210159
Google Scholar
[71] Li T T, Mao D, Petrone N W, Grassi R, Hu H, Ding Y H, Huang Z H, Lo G Q, Hone J C, Low T, Wong C W, Gu T Y 2018 npj 2D Mater. Appl. 2 36
[72] Goldstein J, Lin H T, Deckoff-Jones S, Hempel M, Lu A Y, Richardson K A, Palacios T, Kong J, Hu J J, Englund D 2022 Nat. Commun. 13 3915
Google Scholar
[73] Hashemnezhad H, Noori M 2025 Opt. Laser Technol. 181 111852
Google Scholar
[74] Ding Y H, Cheng Z, Zhu X L, Yvind K, Dong J J, Galili M, Galili M, Hu H, Mortensen N A, Xiao S S, Oxenløwe L K 2020 Nanophotonics 9 317
Google Scholar
[75] Jian J L, Wu J H, Zhong C Y, Ma H, Sun B S, Ye Y T, Luo Y, Wei M L, Lei K H, Liu R Z, Chen Z Q, Li G Y, Dai H, Tang R J, Sun C L, Li J Y, Li W, Li M, Lin H T, Li L 2023 ACS Photonics 10 3494
Google Scholar
[76] Li Z W, Hu S Q, Zhang Q, Tian R J, Gu L P, Zhu Y S, Yuan Q S, Yi R X, Li C, Liu Y, Hao Y, Gan X T, Zhao J L 2022 ACS Photonics 9 282
[77] Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasinski P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R 2024 ACS Appl. Mater. Interfaces 16 28874
Google Scholar
[78] Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247
Google Scholar
[79] Yin Y L, Cao R, Guo J S, Liu C Y, Li J, Feng X L, Wang H D, Du W, Qadir A, Zhang H, Ma Y G, Gao S M, Xu Y, Shi Y C, Tong L M, Dai D X 2019 Laser Photonics Rev. 13 1900032
Google Scholar
[80] Huang L, Dong B, Guo X, Chang Y H, Chen N, Huang X, Liao W G, Zhu C X, Wang H, Lee C K, Ang K W 2018 ACS Nano 13 913
[81] Pang C, Deng Y H, Kheradmand E, Poonkottil N, Petit R, Elsinger L, Detavernier C, Geiregat P, Hens Z, Thourhout D V 2023 ACS Photonics 10 4215
Google Scholar
[82] Yang C M, Liu Z Y, Cai H J, Li D H, Yu Y, Zhang X L 2025 ACS Nano 19 8661
Google Scholar
计量
- 文章访问数: 315
- PDF下载量: 8
- 被引次数: 0