搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波导集成的碳基红外探测器研究进展

吕晓炜 张家振 陈俊宇 刘子卓 赵文超 吴秋诗 徐浩 陈效双

引用本文:
Citation:

波导集成的碳基红外探测器研究进展

吕晓炜, 张家振, 陈俊宇, 刘子卓, 赵文超, 吴秋诗, 徐浩, 陈效双

Research progress of waveguide integrated carbon based infrared detectors

LV Xiaowei, ZHANG Jiazhen, CHEN Junyu, LIU Zizhuo, ZHAO Wenchao, WU Qiushi, XU Hao, CHEN Xiaoshuang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 碳基材料因其独特且优异的光、热、电、磁、力等物理特性在红外光电探测领域备受关注,这些特性使其在通信、军事、成像、能源、生物等领域具有广泛的应用前景。然而,在面向工程化应用的实际场景中,碳基材料仍面临诸多挑战,如富勒烯、石墨烯和单根碳纳米管在红外波段吸收弱、灵敏度不足、响应慢等。碳基材料与波导集成,一方面可限域光场,有效抑制光传输的环境耗散,提升光与物质的耦合效率,从而提高探测器的信噪比、灵敏度、响应速度与工作带宽;另一方面,其工艺兼容CMOS加工工艺,有望实现低成本、高密度集成,可满足下一代红外光电探测器的发展需要。本文围绕多种波导材料集成的碳基红外光电探测器展开综述,详细介绍分析了器件的性能增强策略与发展瓶颈,最后展望了波导集成的碳基红外探测器的发展方向。
    Carbon-based materials have garnered significant attention in the field of infrared photodetection due to their unique and excellent physical properties, including optical, thermal, electrical, magnetic, and mechanical properties. These characteristics endow them with broad application prospects in various fields such as communication, military, imaging, energy, and biology. However, in practical scenarios oriented towards engineering applications, carbon-based materials still encounter numerous challenges, including weak absorption in the infrared band, insufficient sensitivity, and slow response in fullerenes, graphene, and single carbon nanotubes. When integrated with waveguides, carbon-based materials can effectively suppress environmental dissipation of light transmission, confine the light field, enhance the coupling efficiency between light and matter, thereby improving the signal-to-noise ratio, sensitivity, response speed, and operating bandwidth of the detector. On the other hand, waveguide-integrated photodetectors are compatible with CMOS processing technology, promising low-cost, high-density integration to meet the development needs of next-generation infrared photodetectors. This paper provides an overview of carbon-based infrared photodetectors integrated with various waveguide materials, offering a detailed analysis of performance enhancement strategies and development bottlenecks for these devices. Finally, it explores the future directions of waveguide-integrated carbon-based infrared detectors.
  • [1]

    Weiss N O, Zhou H, Liao, L, Liu Y, Jiang S, Huang Y, Duan X 2012 Advanced materials 24 5782

    [2]

    Castro Neto A H, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Reviews of modern physics 81 109

    [3]

    Richter M, Heumüller T, Matt G J, Heiss W, Brabe C J 2017 Advanced Energy Materials 7 1601574

    [4]

    Cheng Z, Li Z, Li M Y, Wen X, Ding X, Xu H, Liu S 2024 Journal of Materials Chemistry A 12 1685

    [5]

    Na W, Zhang J, Cui F, Li X, Shen K, Wu J, Zou G, Xu H 2024 24th International Conference on Transparent Optical Networks, Italy, Jul 14-18, 2024 p1

    [6]

    Lin Q, Zhao C, Li M, Xu H 2024 Chemosensors 12 255

    [7]

    Li X, Dai X, Xu H, Shen K, Guo J, Li C, Zou G, Choy K L, Parkin I P, Guo Z, Liu H 2021 Science China Materials 64 1964

    [8]

    Xu H, Han X, Dai X, Liu W, Wu J, Zhu J, Kim D, Zou G, Sablon K A, Sergeev A, Guo Z 2018 Advanced materials 30 1706561

    [9]

    Itkis M E, Borondics F, Yu A, Haddon R C 2006 Science 312 413

    [10]

    St-Antoine B C, Ménard D, Martel R 2011 Nano letters 11 609

    [11]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature nanotechnology 4 839

    [12]

    Mueller T, Xia F, Avouris P 2010 Nature photonics 4 297

    [13]

    Yang Q, Zhang C, Wu S, Li S, Bao Q, Giannini V, Maier S A, Li X 2018 Nano Energy 48 161

    [14]

    Liang S, Ma Z, Wu G, Wei N, Huang L, Huang H, Liu H, Wang S, Peng L M 2016 ACS nano 10 6963

    [15]

    Cao X, Peng L, Liu L, Lv J, Li Z, Tian F, Dong Y, Liu X, Shen Y, Sun H, Xu Y, Fang W, Gao C 2022 Carbon 198 244

    [16]

    Jin Y, Zhang T, Zhao J, Zhao Y, Liu C, Song J, Hao X, Wang J, Jiang K, Fan S, Li Q 2021 Carbon 178 616

    [17]

    Bosnick K, Gabo N, McEuen P 2006 Appl. Phys. Lett. 89 163121

    [18]

    Lee J U, Gipp P P, Heller C M 2004 Appl. Phys. Lett. 85 145

    [19]

    Liu Y, Han J, Wei N, Qiu S, Li H, Li Q, Wang S, Peng L M 2016 Nanoscale 8 17122

    [20]

    Pradhan B, Setyowati K, Liu H, Waldeck D H, Chen J 2008 Nano letters 8 1142

    [21]

    Park S, Kim S J, Nam J H, Pitner G, Lee T H, Ayzner A L, Wang H, Fong S W, Vosgueritchian M, Park Y J, Brongersma M L 2014 Advanced Materials 27 759

    [22]

    Arnold M S, Zimmerman J D, Renshaw C K, Xu X, Lunt R R, Austin C M, Forrest S R 2009 Nano letters 9 3354

    [23]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nature communications 2 458

    [24]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano letters 12 2773

    [25]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer F P, Gatti F, Koppens F H 2012 Nature nanotechnology 7 363

    [26]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nature nanotechnolog 9 273

    [27]

    Koester S J, Li M 2013 IEEE Journal of Selected Topics in Quantum Electronics 20 84

    [28]

    Tailor N K, Aranda C A, Saliba M, Satapathi S 2022 ACS Materials Letters 4 2298

    [29]

    Long M, Wang P, Fang H, Hu W 2019 Advanced Functional Materials 29 1803807

    [30]

    Xu J, Zhang Z, Zhang W, Chen Z 2024 Processes 12 1728

    [31]

    Periyanagounder D, Gnanasekar P, Varadhan P, He J H, Kulandaivel J 2018 Journal of Materials Chemistry C 6 9545

    [32]

    Cai X, Wang S, Peng L M 2023 Nano Res. Energy 2 e9120058

    [33]

    Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano letters 14 6109

    [34]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nature nanotechnology 9 780

    [35]

    Tissot J L, Trouilleau C, Fieque B, Crastes A, Legras O 2006 Opto-Electronics Review 14 25

    [36]

    Gong Y G, Li W, Cai H H, Li Z, Chen C, Jiang Y D 2009 Chinese Journal of Sensors and Actuators 8 1122 (in Chinese) [龚宇光,李伟,蔡海洪,李志,陈超,蒋亚东 2009 传感技术学报 8 1122]

    [37]

    Soref R A 2002 Proceedings of the IEEE 81 1687

    [38]

    Richards P L 1994 Journal of Applied Physics 76 1

    [39]

    He X, Léonard F, Kono J 2015 Advanced Optical Materials 3 989

    [40]

    Yang Q, Shen J, Wei X Z, Shi H F 2020 Infrared and Laser Engineering 49 23 (in Chinese) [杨旗,申钧,魏兴战,史浩飞 2020 红外与激光工程 49 23]

    [41]

    Gabor N M, Song J C, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo-Herrero P 2011 Science 334 648

    [42]

    Song J C, Tielrooij K J, Koppens F H, Levitov L S 2013 Physical Review B 87 155429

    [43]

    Tielrooij K J, Song J C, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H 2013 Nature Physics 9 248

    [44]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 611

    [45]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Letters 16 8

    [46]

    Fang J, Wang D, DeVault C T, Chung T F, Chen Y P, Boltasseva A, Shalaev V M, Kildishev A V 2017 Nano letters 17 57

    [47]

    Gan X, Shiue R J, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nature photonics 7 883

    [48]

    Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nature Photonics 7 892

    [49]

    Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J, Porschatis C, Prinzen A, Matheisen C, Kuebart W, Junginger B, Templ W 2014 Acs Photonics 1 781

    [50]

    Wang X, Cheng Z, Xu K, Tsang H K, Xu J B 2013 Nature Photonics 7 888

    [51]

    Youngblood N, Anugrah Y, Ma R, Koester S J, Li M 2014 Nano letters 14 2741

    [52]

    Ma Z, Yang L, Liu L, Wang S, Peng L M 2020 ACS nano 14 7191

    [53]

    Zhao H, Yang L, Wu W, Cai X, Yang F, Xiu H, Wang Y, Zhang Q, Xin X, Zhang F, Peng L M 2023 ACS nano 17 7466

    [54]

    Zhao H, Yang L, Xiu H, Deng M, Wang Y, Zhang Q 2024 Applied Optics 63 4435

    [55]

    Shiue R J, Gao Y, Wang Y, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H, Hone J, Englund D 2015 Nano letters 15 7288

    [56]

    Wang J, Cheng Z, Chen Z, Wan X, Zhu B, Tsang H K, Shu C, Xu J 2016 Nanoscale 8 13206

    [57]

    Guo J, Li J, Liu C, Yin Y, Wang W, Ni Z, Fu Z, Yu H, Xu Y, Shi Y, Ma Y 2020 Light: Science & Applications 9 29

    [58]

    Marconi S, Giambra M A, Montanaro A, Mišeikis V, Soresi S, Tirelli S, Galli P, Buchali F, Templ W, Coletti C, Sorianello V 2021 Nature communications 12 806

    [59]

    Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, De Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano letters 16 3005

    [60]

    Rieben D, Blatter T, Koepfli S M, Kulmer L, Horst Y, Moor D, Nashashibi S, Homs M, Bisang D, Baumann M, Fedoryshyn Y, Leuthold J 2025 Optical Fiber Communication Conference (OFC 2025) Th3E.4

    [61]

    Muñoz P, Micó G, Bru L A, Pastor D, Pérez D, Doménech J D, Fernández J, Baños R, Gargallo B, Alemany R, Sánchez A M 2017 Sensors 17 2088

    [62]

    Blumenthal D J, Heideman R, Geuzebroek D, Leinse A, Roeloffzen C 2018 Proceedings of the IEEE 106 2209

    [63]

    Bauters J F, Heck M J, John D, Dai D, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E 2011 Optics express 19 3163

    [64]

    Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C 2015 J. Appl. Phys. 117 144504

    [65]

    Ferrari A C, Bonaccorso F, Fal'Ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A 2015 Nanoscale 7 4598

    [66]

    Mišeikis V, Marconi S, Giambra M A, Montanaro A, Martini L, Fabbri F, Pezzini S, Piccinini G, Forti S, Terrés B, Goykhman I 2020 ACS nano 14 11190

    [67]

    Muench J E, Ruocco A, Giambra M A, Miseikis V, Zhang D, Wang J, Watson H F, Park G C, Akhavan S, Sorianello V, Midrio M 2019 Nano letters 19 7632

    [68]

    Gao Y, Tao L, Tsang H K, Shu C 2018 Appl. Phys. Lett. 112 211107

    [69]

    Giambra M A, Mišeikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari A C, Coletti C, Romagnoli M 2021 ACS nano 15 3171

    [70]

    Schuler S, Schall D, Neumaier D, Dobusch L, Bethge O, Schwarz B, Krall M, Mueller T 2016 Nano letters 16 7107

    [71]

    Yan S, Zuo Y, Xiao S, Oxenløwe L K, Ding Y 2022 Opto-Electronic Advances 5 210159

    [72]

    Li T, Mao D, Petrone N W, Grassi R, Hu H, Ding Y, Huang Z, Lo G Q, Hone J C, Low T, Wong C W 2018 npj 2D Materials and Applications 2 36

    [73]

    Goldstein J, Lin H, Deckoff-Jones S, Hempel M, Lu A Y, Richardson K A, Palacios T, Kong J, Hu J, Englund D 2022 Nature Communications 13 3915

    [74]

    Hashemnezhad H, Noori M 2025 Optics & Laser Technology 181 111852

    [75]

    Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Galili M, Hu H, Mortensen N A, Xiao S, Oxenløwe L K 2020 Nanophotonics 9 317

    [76]

    Jian J L, Wu J H, Zhong C Y, Ma H, Sun B S, Ye Y T, Luo Y, Wei M L, Lei K H, Liu R Z, Chen Z Q, Li G Y, Dai H, Tang R J, Sun C L, Li J Y, Li W, Li M, Lin H T, Li L 2023 ACS Photonics 10 3494

    [77]

    Li Z W, Hu S Q, Zhang Q, Tian R J, Gu L P, Zhu Y S, Yuan Q S, Yi R X, Li C, Liu Y, Hao Y, Gan X T, Zhao J L 2022 ACS Photonics 9 282

    [78]

    Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasinski P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R 2024 ACS Applied Materials & Interfaces 16 28874

    [79]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nature photonics 9 247

    [80]

    Yin Y L, Cao R, Guo J S, Liu C Y, Li J, Feng X L, Wang H D, Du W, Qadir A, Zhang H, Ma Y G, Gao S M, Xu Y, Shi Y C, Tong L M, Dai D X 2019 Laser & Photonics Reviews 13 1900032

    [81]

    Huang L, Dong B, Guo X, Chang Y H, Chen N, Huang X, Liao W G, Zhu C X, Wang H, Lee C K, Ang K W 2018 ACS nano 13 913

    [82]

    Pang C, Deng Y H, Kheradmand E, Poonkottil N, Petit R, Elsinger L, Detavernier C, Geiregat P, Hens Z, Thourhout D V 2023 ACS photonics 10 4215

    [83]

    Yang C, Liu Z, Cai H, Li D, Yu Y, Zhang X 2025 ACS nano 19 8661

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, doi: 10.7498/aps.73.20240489
    [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, doi: 10.7498/aps.73.20231657
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, doi: 10.7498/aps.72.20221253
    [4] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, doi: 10.7498/aps.72.20221564
    [5] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, doi: 10.7498/aps.71.20220380
    [6] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, doi: 10.7498/aps.71.20212203
    [7] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, doi: 10.7498/aps.70.20201943
    [8] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, doi: 10.7498/aps.68.20182090
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [10] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, doi: 10.7498/aps.67.20180125
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, doi: 10.7498/aps.67.20180114
    [12] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, doi: 10.7498/aps.67.20180196
    [13] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, doi: 10.7498/aps.67.20180036
    [14] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, doi: 10.7498/aps.67.20172016
    [15] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [16] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, doi: 10.7498/aps.67.20180307
    [17] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, doi: 10.7498/aps.66.218501
    [18] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, doi: 10.7498/aps.60.107202
    [19] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, doi: 10.7498/aps.54.848
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, doi: 10.7498/aps.50.450
计量
  • 文章访问数:  114
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回