-
基于13.5 nm工作波长的缺陷表征技术是突破极紫外(Extreme Ultraviolet,简记为EUV)掩模制备质量瓶颈的关键基础.同步辐射光源能产生波长稳定可调谐、洁净无污染的EUV光束,是开展掩模缺陷表征研究的理想光源.本文综述了国际知名同步辐射EUV光源掩模缺陷表征平台的工作原理、性能指标及技术优缺点,深入剖析了结合傅里叶合成照明的离轴波带片全场成像、结合扫描技术与相干衍射成像的叠层衍射成像这两类主流表征方案,同时指出了掩模缺陷检测和分析一体化、光源微型化、成像技术优势互补的发展趋势.本文结论不仅为下一代EUV掩模缺陷表征平台设计提供了参考范例,也为国产化6英寸EUV掩模缺陷表征系统的实际研制提供了一定的工程实践价值.The multilayer structure of EUV masks limits the penetration depth of traditional inspection techniques at non-working wavelengths, hindering the effective review of buried phase defects. Developing defect characterization techniques operating at the 13.5 nm wavelength is crucial for overcoming the quality bottleneck in EUV mask fabrication. Synchrotron radiation light sources, with their stable EUV wavelength, cleanliness, and high power density, represent an ideal light source for EUV mask defect characterization research. This paper systematically reviews the current state of technology development for mask characterization at the world's four major synchrotron radiation facilities. Through comparative analysis, it delves into their working principles, technical advantages, and limitations, and provides a forward-looking discussion on future trends. For the specific requirements for EUV mask defect inspection and review, the paper discusses the need for next-generation system platforms to deeply integrate inspection and review functionalities, develop novel compact light sources, and innovatively combine the strengths of various imaging techniques to enhance the numerical aperture (NA) of imaging systems. This aims to achieve a theoretical resolution surpassing 20 nm, meeting the future demands of the EUV lithography industry for higher NA (>0.55) and shorter wavelengths (6.7 nm). Regarding the prospects for extending synchrotron radiation to industrial applications, it introduces compact synchrotron sources that enable on-site deployment within semiconductor facilities to accelerate R&D cycles, alongside the synergistic integration of imaging technologies. The paper highlights applying the phase retrieval principle of Ptychography to Fourier Synthesis Illumination (FSI), enabling aberration correction in lens-based systems through synthetic aperture extension. This paper examines the working principles, performance benchmarks, technical challenges, and emerging development trends of existing synchrotron radiation-based EUV mask characterization techniques. It provides a significant reference for designing next-generation EUV mask characterization system platforms.
-
Keywords:
- Extreme Ultraviolet (EUV) Mask /
- Synchrotron Radiation Source /
- Mask Defect Inspection and Review /
- Fourier Synthesis Illumination
-
[1] Sivakumar S 2011 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), January 25-28, 2011 p402
[2] 刘海岗, 孟祥雨, 张祥志, 赵波, 赵俊, 郭智, 吴衍青, 王勇, 邰仁忠 2023 中国 Patent CN117890382A
[3] Su Z J, Liu H G, Meng X Y, Zhang X Z, Zhao B, Guo Z, Wang Y, Tai R Z 2025 Nucl. Tech. 48 030102 (in Chinese) [苏子净, 刘海岗, 孟祥雨, 张祥志, 赵波, 郭智, 王勇, 邰仁忠 2025 核技术 48 030102]
[4] Cui M Q, Wang J, Miao J W, Huang Y Y, Tang E S, Xian D C, Shao J H, Xue S, Xu Z L, Sun J H 1995 High Energy Phys. Nucl. Phys. 19 82 (in Chinese) [崔明启, 王俊, 缪建伟, 黄宇营, 唐鄂生, 冼鼎昌, 邵景鸿, 薛松, 徐正良, 孙剑辉 1995 高能物理与核物理 19 82]
[5] Ko J H, Kim M W, Lee S, Han J-H, Hong J 2024 J. Korean Phys. Soc. 84 189
[6] Bergmann R M, Bieri T, Craievich P, Y. Ekinci T G, C. Gough M N, L. Rivkin C R, L. Schulz T S, L. Stingelin A S, Wrulich V V A, Callegher A Z, Zennaro R 2017 AccApp'17 Quebec, July 31-August 4, 2017 p217
[7] 8, 2012 p83520W-1
[8] Pfeiffer F 2018 Nat. Photonics 12 9
[9] Miyai H, Kohyama T, Todoroki T 2021 Photomask Japan 2021 Japan, April 20-21, 2021 p119080H-1
[10] Gwosch K, Capelli R, Roesch M, Nicholls R, Langbehn B, Mohn M, Verch A, Albert M, Kersteen G, Winkler A, Müller C, Krannich S 2023 SPIE Photomask Technology + Extreme Ultraviolet Lithography 2023 Monterey, California, October 1-5, 2023 pPC127500O-1
[11] Zhao H J, Li H G, Yan L, Li C 2016 Cyber Security And Data Governance 35 8 (in Chinese) [赵红军, 李昊罡, 颜亮, 李川 2016 网络安全与数据治理 35 8]
[12] Spie Photomask Technology V, International B 2015 SPIE Photomask Technology Monterey, California, September 29-October 1, 2015 p271
[13] Lin J, Weber N, Maul J, Hendel S, Rott K, Merkel M, Schoenhense G, Kleineberg U 2007 Opt. Lett. 32 1875
[14] Li H, Wu X B, Han X Q, Ma H, Sha P F 2023 Chinese Journal of Lasers 50 113 (in Chinese) [李慧, 吴晓斌, 韩晓泉, 马赫, 沙鹏飞 2023 中国激光 50 113]
[15] Yang L, Ma Z, Liu S, Jiao Q, Zhang J, Zhang W, Pei J, Li H, Li Y, Zou Y, Xu Y, Tan X 2022 Sensors 22 1113
[16] García-Escudero A, Navarro-Bustos G, Umbría-Jiménez S, González-Cámpora R, Galera-Davidson H 2017 Rev. Soc. Esp. Quim. Clin. 50 113
[17] Goldberg K, Mochi I, Benk M, Allezy A, Dickinson M, Cork C, Zehm D, Macdougall J, Anderson E, Salmassi F, Chao W, Vytla V, Gullikson E, DePonte J, Jones M S G, Van Camp D, Gamsby J, Ghiorso W, Huang H, Cork W, Martin E, Van Every E, Acome E, Milanovic V, Delano R, Naulleau P, Rekawa S 2013 SPIE Advanced Lithography San Jose, California, February 24-28, 2013 p867919-1
[18] Pan X Y, Bi X X, Dong Z, Geng Z, Xu H, Zhang Y, Dong Y H, Zhang C L 2023 Acta Phys. Sin. 72 054202-1 (in Chinese) [潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙 2023 物理学报 72 054202-1]
[19] Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702 (in Chinese) [范家东, 江怀东 2012 物理学报 61 218702]
[20] Lee S, Guizar-Sicairos M, Ekinci Y 2014 SPIE Advanced Lithography San Jose, California, February 23-27, 2014 p904811-1
[21] 9, 2018 p106560W-1
[22] Mochi I, Helfenstein P, Mohacsi I, Rajendran R, Kazazis D, Yoshitake S, Ekinci Y 2017 J. Micro/Nanolithogr., MEMS, MOEMS 16 041003
[23] Tanaka Y, Harada T, Amano T, Usui Y, Watanabe T, Kinoshita H 2014 Jpn. J. Appl. Phys. 53 06JC03
[24] Miyakawa R, and Naulleau P 2019 Synchrotron Radiat. News 32 15
[25] Benk M, Wojdyla A, Chao W, Salmassi F, Oh S, Wang Y-G, Miyakawa R, Naulleau P, Goldberg K 2016 SPIE Advanced Lithography San Jose, California, February 21-25, 2016 p97761J-1
[26] Goldberg K, Benk M, Wojdyla A, Mochi I, Rekawa S, Allezy A, Dickinson M, Cork C, Chao W, Zehm D, Macdougall J, Naulleau P, Rudack A 2014 SPIE Advanced Lithography San Jose, California, February 23-27, 2014 p90480Y-1
[27] Li X L, Meng X Y, Wang Y, Liu H G, Zhang Y F, Zhang X Z, Zhao B, Zhao J, Tai R Z 2025 Phys. Scr. 100 045533
[28] Wakonig K, Diaz A, Bonnin A, Stampanoni M, Bergamaschi A, Ihli J, Guizar-Sicairos M, Menzel A 2019 Sci. Adv. 5 eaav0282
计量
- 文章访问数: 242
- PDF下载量: 0
- 被引次数: 0