搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同步辐射极紫外光源的掩模缺陷表征技术

张芷赫 刘海岗 王勇 邰仁忠

引用本文:
Citation:

基于同步辐射极紫外光源的掩模缺陷表征技术

张芷赫, 刘海岗, 王勇, 邰仁忠

Mask defects characterization techniques based on synchrotron radiation extreme ultraviolet light source

ZHANG Zhihe, LIU Haigang, WANG Yong, TAI Renzhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于13.5 nm工作波长的缺陷表征技术是突破极紫外(extreme ultraviolet, EUV)掩模制备质量瓶颈的关键基础. 同步辐射光源能产生波长稳定可调谐、洁净无污染的EUV光束, 是开展掩模缺陷表征研究的理想光源. 本文综述了国际知名同步辐射EUV光源掩模缺陷表征平台的工作原理、性能指标及技术优缺点, 深入剖析了结合傅里叶合成照明的离轴波带片全场成像、结合扫描技术与相干衍射成像的叠层衍射成像这两类主流表征方案, 同时指出了掩模缺陷检测和分析一体化、光源微型化、成像技术优势互补的发展趋势. 本文结论不仅为下一代EUV掩模缺陷表征平台设计提供了参考范例, 也为国产化6英寸EUV掩模缺陷表征系统的实际研制提供了一定的工程实践价值.
    The multilayer structure of extreme ultraviolet (EUV) masks limits the penetration depth of traditional inspection techniques at non-working wavelengths, thus hindering the effective examination of buried phase defects. Developing defect characterization techniques operating at the 13.5 nm wavelength is crucial for overcoming the quality bottleneck in EUV mask fabrication. Synchrotron radiation light source, with their stable EUV wavelength, cleanliness, and high power density, represents an ideal light source for EUV mask defect characterization research. In this work the current state of technology development for mask characterization at the world's four major synchrotron radiation facilities are systematically reviewed. Through comparative analysis, their working principles, technical advantages, and limitations are investigated in depth, and provide a forward-looking discussion on future trends. In response to the specific requirements for EUV mask defect detection and review, this paper discusses the requirements for the next-generation system platform, which integrates deep detection and review functions, develops novel compact light sources, and innovatively combines the advantages of various imaging techniques to improve the numerical aperture (NA) of imaging systems. This aims to achieve a theoretical resolution of over 20 nm, meeting the future demands of the EUV lithography industry for higher NA (>0.55) and shorter wavelengths (6.7 nm). Regarding the prospects of extending synchrotron radiation to industrial applications, a compact synchrotron radiation source, which can be developed on-site in semiconductor facilities, is introduced to accelerate the research and development cycle, while achieving the synergistic integration of imaging technologies. This paper focuses on the application of phase recovery principle of ptychography to Fourier synthesis illumination (FSI), achieving aberration correction in lens-based systems through synthetic aperture extension. In this paper, the working principles, performance benchmarks, technical challenges, and emerging development trends of existing synchrotron radiation-based EUV mask characterization techniques are investigated. It provides an important reference for designing next-generation EUV mask characterization system platforms.
  • 图 1  EUV掩模结构及典型缺陷

    Fig. 1.  EUV mask structure and typical defects.

    图 2  (a) 傅里叶合成照明光路图及照明模式样例; (b) SHARP的光路设计[17]; (c) SSRF-BL09B1A的光路设计

    Fig. 2.  (a) Schematic optical layout of FSI and representative illumination patterns; (b) optical path design of SHARP[17]; (c) optical path design of SSRF-BL09B1A.

    图 3  (a) RESCAN的光路设计[22]; (b) Micro-CSM的光路设计[23]

    Fig. 3.  (a) Optical path design of RESCAN[22]; (b) optical path design of Micro-CSM[23].

    表 1  国际知名同步辐射光源与表征设备对比

    Table 1.  Comparison of internationally renowned synchrotron radiation sources and characterization equipment.

    光源ALSSLSNew
    SUBARU
    SSRF
    平台SHARPRESCANMicro-
    CSM
    SSRF-
    BL09B1A
    功能分析在线检测+
    分析
    分析在线检测+
    分析
    成像技术全场
    成像
    叠层衍射
    成像
    相干衍射
    成像
    全场
    成像
    92 eV能量分辨
    率(EE)
    10–44%13001000—8000
    光斑直径/μm30100.23>25
    分辨率/nm22343020(设计)
    下载: 导出CSV
  • [1]

    Sivakumar S 2011 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011) Hongkong, China, January 25–28, 2011 p402

    [2]

    刘海岗, 孟祥雨, 张祥志, 赵波, 赵俊, 郭智, 吴衍青, 王勇, 邰仁忠 2023 中国专利CN117890382A

    Liu H G, Meng X Y, Zhang X Z, Zhao B, Zhao J, Guo Z, Wu Y Q, Wang Y, Tai RZ 2023 Patent CN117890382A

    [3]

    苏子净, 刘海岗, 孟祥雨, 张祥志, 赵波, 郭智, 王勇, 邰仁忠 2025 核技术 48 030102

    Su Z J, Liu H G, Meng X Y, Zhang X Z, Zhao B, Guo Z, Wang Y, Tai R Z 2025 Nucl. Tech. 48 030102

    [4]

    崔明启, 王俊, 缪建伟, 黄宇营, 唐鄂生, 冼鼎昌, 邵景鸿, 薛松, 徐正良, 孙剑辉 1995 高能物理与核物理 19 82

    Cui M Q, Wang J, Miao J W, Huang Y Y, Tang E S, Xian D C, Shao J H, Xue S, Xu Z L, Sun J H 1995 High Energy Phys. Nucl. Phys. 19 82

    [5]

    Ko J H, Kim M W, Lee S, Han J H, Hong J 2024 J. Korean Phys. Soc. 84 189Google Scholar

    [6]

    Bergmann R M, Bieri T, Craievich P, Ekinci T G, Gough M N, Rivkin C R, Schulz T S, Stingelin A S, Wrulich V V A, Callegher A Z, Zennaro R 2017 13 th International Topical Meeting on the Applications of Accelerators Quebec, Cnanda, July 31–August 4, 2017 p217

    [7]

    Rastegar A, Jindal V 2012 28th European Mask and Lithography Conference (EMLC 2012) Dresden, Germany, January17–18, 2012 p83520W

    [8]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [9]

    Miyai H, Kohyama T, Todoroki T 2021 Photomask Japan 2021 Japan, April 20–21, 2021 p119080H

    [10]

    Gwosch K, Capelli R, Roesch M, Nicholls R, Langbehn B, Mohn M, Verch A, Albert M, Kersteen G, Winkler A, Müller C, Krannich S 2023 SPIE Photomask Technology + Extreme Ultraviolet Lithography 2023 Monterey, California, USA, October 1–5, 2023 pPC127500O

    [11]

    赵红军, 李昊罡, 颜亮, 李川 2016 网络安全与数据治理 35 8Google Scholar

    Zhao H J, Li H G, Yan L, Li C 2016 Cyber Secur. Data Govern. 35 8Google Scholar

    [12]

    Spie Photomask Technology V, International B 2015 SPIE Photomask Technology Monterey, California, USA, September 29–October 1, 2015 p271

    [13]

    Lin J, Weber N, Maul J, Hendel S, Rott K, Merkel M, Schoenhense G, Kleineberg U 2007 Opt. Lett. 32 1875Google Scholar

    [14]

    李慧, 吴晓斌, 韩晓泉, 马赫, 沙鹏飞 2023 中国激光 50 113

    Li H, Wu X B, Han X Q, Ma H, Sha P F 2023 Chin. J. Lasers 50 113

    [15]

    Yang L, Ma Z, Liu S, Jiao Q, Zhang J, Zhang W, Pei J, Li H, Li Y, Zou Y, Xu Y, Tan X 2022 Sensors 22 1113Google Scholar

    [16]

    García-Escudero A, Navarro-Bustos G, Umbría-Jiménez S, González-Cámpora R, Galera-Davidson H 2017 Rev. Soc. Esp. Quim. Clin. 50 113

    [17]

    Goldberg K, Mochi I, Benk M, Allezy A, Dickinson M, Cork C, Zehm D, Macdougall J, Anderson E, Salmassi F, Chao W, Vytla V, Gullikson E, DePonte J, Jones M S G, Van Camp D, Gamsby J, Ghiorso W, Huang H, Cork W, Martin E, Van Every E, Acome E, Milanovic V, Delano R, Naulleau P, Rekawa S 2013 SPIE Advanced Lithography San Jose, California, February 24–28, 2013 p867919

    [18]

    潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙 2023 物理学报 72 054202Google Scholar

    Pan X Y, Bi X X, Dong Z, Geng Z, Xu H, Zhang Y, Dong Y H, Zhang C L 2023 Acta Phys. Sin. 72 054202Google Scholar

    [19]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [20]

    Lee S, Guizar-Sicairos M, Ekinci Y 2014 SPIE Advanced Lithography San Jose, California, February 23–27, 2014 p904811–1

    [21]

    Wojdyla A, Benk M, Naulleau P, Goldberg K 2018 Image Sensing Technologies: Materials, Devices, Systems, and Applications V Gaylord Palms Hotel, Orlando, April 16–19, 2018 p106560W

    [22]

    Mochi I, Helfenstein P, Mohacsi I, Rajendran R, Kazazis D, Yoshitake S, Ekinci Y 2017 J. Micro/Nanolithogr. , MEMS, MOEMS 16 041003Google Scholar

    [23]

    Tanaka Y, Harada T, Amano T, Usui Y, Watanabe T, Kinoshita H 2014 Jpn. J. Appl. Phys. 53 06JC03Google Scholar

    [24]

    Miyakawa R, and Naulleau P 2019 Synchrotron Radiat. News 32 15

    [25]

    Benk M, Wojdyla A, Chao W, Salmassi F, Oh S, Wang Y-G, Miyakawa R, Naulleau P, Goldberg K 2016 SPIE Advanced Lithography San Jose, California, February 21–25, 2016 p97761J–1

    [26]

    Goldberg K, Benk M, Wojdyla A, Mochi I, Rekawa S, Allezy A, Dickinson M, Cork C, Chao W, Zehm D, Macdougall J, Naulleau P, Rudack A 2014 SPIE Advanced Lithography San Jose, California, February 23-27, 2014 p90480Y–1

    [27]

    Li X L, Meng X Y, Wang Y, Liu H G, Zhang Y F, Zhang X Z, Zhao B, Zhao J, Tai R Z 2025 Phys. Scr. 100 045533Google Scholar

    [28]

    Wakonig K, Diaz A, Bonnin A, Stampanoni M, Bergamaschi A, Ihli J, Guizar-Sicairos M, Menzel A 2019 Sci. Adv. 5 eaav0282Google Scholar

  • [1] 王天泽, 胡桢麟, 何梁, 黄铸, 刘懿贤, 付轹文, 林楠, 冷雨欣. 延时可调的双波长激光与Sn靶作用的极紫外辐射特性. 物理学报, doi: 10.7498/aps.74.20250113
    [2] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, doi: 10.7498/aps.73.20231377
    [3] 陈星宇, 周昕, 白星, 余展, 王玉杰, 李欣家, 刘洋, 孙铭泽. 傅里叶鬼成像与正弦鬼成像的等价性分析. 物理学报, doi: 10.7498/aps.72.20222317
    [4] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析. 物理学报, doi: 10.7498/aps.71.20212366
    [5] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, doi: 10.7498/aps.68.20190839
    [6] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较. 物理学报, doi: 10.7498/aps.68.20181801
    [7] 陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁. 采用衍射掩模产生白光横向平顶光束. 物理学报, doi: 10.7498/aps.67.20180030
    [8] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用. 物理学报, doi: 10.7498/aps.66.224201
    [9] 张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋. 傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析. 物理学报, doi: 10.7498/aps.65.114201
    [10] 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索. 物理学报, doi: 10.7498/aps.64.069201
    [11] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, doi: 10.7498/aps.64.184205
    [12] 刘永迪, 李虹, 张波, 郑琼林, 游小杰. 基于双重傅里叶级数的混沌SPWM频谱量化分析. 物理学报, doi: 10.7498/aps.63.070503
    [13] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, doi: 10.7498/aps.62.245204
    [14] 王建栋, 郭维栋, 李红祺. 拓展傅里叶幅度敏感性检验(EFAST)在陆面过程模式中参数敏感性分析的应用探索. 物理学报, doi: 10.7498/aps.62.050202
    [15] 陈明惠, 丁志华, 王成, 宋成利. 基于法布里-珀罗调谐滤波器的傅里叶域锁模扫频激光光源. 物理学报, doi: 10.7498/aps.62.068703
    [16] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析. 物理学报, doi: 10.7498/aps.58.4731
    [17] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, doi: 10.7498/aps.57.5100
    [18] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析. 物理学报, doi: 10.7498/aps.57.6202
    [19] 苏夷希, 巨新, 魏坤, 池元斌, 韩正甫, 石军岩, 邓杰, 施朝淑. 纳米纤锌矿氮化硼的同步辐射真空紫外反射光谱与光学性质. 物理学报, doi: 10.7498/aps.43.1718
    [20] 蔡履中, 张幼文. 彩虹全息图成象的傅里叶分析. 物理学报, doi: 10.7498/aps.31.1020
计量
  • 文章访问数:  397
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-01
  • 修回日期:  2025-08-31
  • 上网日期:  2025-09-04

/

返回文章
返回