-
基于13.5 nm工作波长的缺陷表征技术是突破极紫外(extreme ultraviolet, EUV)掩模制备质量瓶颈的关键基础. 同步辐射光源能产生波长稳定可调谐、洁净无污染的EUV光束, 是开展掩模缺陷表征研究的理想光源. 本文综述了国际知名同步辐射EUV光源掩模缺陷表征平台的工作原理、性能指标及技术优缺点, 深入剖析了结合傅里叶合成照明的离轴波带片全场成像、结合扫描技术与相干衍射成像的叠层衍射成像这两类主流表征方案, 同时指出了掩模缺陷检测和分析一体化、光源微型化、成像技术优势互补的发展趋势. 本文结论不仅为下一代EUV掩模缺陷表征平台设计提供了参考范例, 也为国产化6英寸EUV掩模缺陷表征系统的实际研制提供了一定的工程实践价值.The multilayer structure of extreme ultraviolet (EUV) masks limits the penetration depth of traditional inspection techniques at non-working wavelengths, thus hindering the effective examination of buried phase defects. Developing defect characterization techniques operating at the 13.5 nm wavelength is crucial for overcoming the quality bottleneck in EUV mask fabrication. Synchrotron radiation light source, with their stable EUV wavelength, cleanliness, and high power density, represents an ideal light source for EUV mask defect characterization research. In this work the current state of technology development for mask characterization at the world's four major synchrotron radiation facilities are systematically reviewed. Through comparative analysis, their working principles, technical advantages, and limitations are investigated in depth, and provide a forward-looking discussion on future trends. In response to the specific requirements for EUV mask defect detection and review, this paper discusses the requirements for the next-generation system platform, which integrates deep detection and review functions, develops novel compact light sources, and innovatively combines the advantages of various imaging techniques to improve the numerical aperture (NA) of imaging systems. This aims to achieve a theoretical resolution of over 20 nm, meeting the future demands of the EUV lithography industry for higher NA (>0.55) and shorter wavelengths (6.7 nm). Regarding the prospects of extending synchrotron radiation to industrial applications, a compact synchrotron radiation source, which can be developed on-site in semiconductor facilities, is introduced to accelerate the research and development cycle, while achieving the synergistic integration of imaging technologies. This paper focuses on the application of phase recovery principle of ptychography to Fourier synthesis illumination (FSI), achieving aberration correction in lens-based systems through synthetic aperture extension. In this paper, the working principles, performance benchmarks, technical challenges, and emerging development trends of existing synchrotron radiation-based EUV mask characterization techniques are investigated. It provides an important reference for designing next-generation EUV mask characterization system platforms.
-
Keywords:
- extreme ultraviolet (EUV) mask /
- synchrotron radiation source /
- mask defect inspection and review /
- Fourier synthesis illumination
-
表 1 国际知名同步辐射光源与表征设备对比
Table 1. Comparison of internationally renowned synchrotron radiation sources and characterization equipment.
光源 ALS SLS New
SUBARUSSRF 平台 SHARP RESCAN Micro-
CSMSSRF-
BL09B1A功能 分析 在线检测+
分析分析 在线检测+
分析成像技术 全场
成像叠层衍射
成像相干衍射
成像全场
成像92 eV能量分辨
率(E/ΔE)10–4 4% 1300 1000—8000 光斑直径/μm 30 10 0.23 >25 分辨率/nm 22 34 30 20(设计) -
[1] Sivakumar S 2011 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011) Hongkong, China, January 25–28, 2011 p402
[2] 刘海岗, 孟祥雨, 张祥志, 赵波, 赵俊, 郭智, 吴衍青, 王勇, 邰仁忠 2023 中国专利CN117890382A
Liu H G, Meng X Y, Zhang X Z, Zhao B, Zhao J, Guo Z, Wu Y Q, Wang Y, Tai RZ 2023 Patent CN117890382A
[3] 苏子净, 刘海岗, 孟祥雨, 张祥志, 赵波, 郭智, 王勇, 邰仁忠 2025 核技术 48 030102
Su Z J, Liu H G, Meng X Y, Zhang X Z, Zhao B, Guo Z, Wang Y, Tai R Z 2025 Nucl. Tech. 48 030102
[4] 崔明启, 王俊, 缪建伟, 黄宇营, 唐鄂生, 冼鼎昌, 邵景鸿, 薛松, 徐正良, 孙剑辉 1995 高能物理与核物理 19 82
Cui M Q, Wang J, Miao J W, Huang Y Y, Tang E S, Xian D C, Shao J H, Xue S, Xu Z L, Sun J H 1995 High Energy Phys. Nucl. Phys. 19 82
[5] Ko J H, Kim M W, Lee S, Han J H, Hong J 2024 J. Korean Phys. Soc. 84 189
Google Scholar
[6] Bergmann R M, Bieri T, Craievich P, Ekinci T G, Gough M N, Rivkin C R, Schulz T S, Stingelin A S, Wrulich V V A, Callegher A Z, Zennaro R 2017 13 th International Topical Meeting on the Applications of Accelerators Quebec, Cnanda, July 31–August 4, 2017 p217
[7] Rastegar A, Jindal V 2012 28th European Mask and Lithography Conference (EMLC 2012) Dresden, Germany, January17–18, 2012 p83520W
[8] Pfeiffer F 2018 Nat. Photonics 12 9
Google Scholar
[9] Miyai H, Kohyama T, Todoroki T 2021 Photomask Japan 2021 Japan, April 20–21, 2021 p119080H
[10] Gwosch K, Capelli R, Roesch M, Nicholls R, Langbehn B, Mohn M, Verch A, Albert M, Kersteen G, Winkler A, Müller C, Krannich S 2023 SPIE Photomask Technology + Extreme Ultraviolet Lithography 2023 Monterey, California, USA, October 1–5, 2023 pPC127500O
[11] 赵红军, 李昊罡, 颜亮, 李川 2016 网络安全与数据治理 35 8
Google Scholar
Zhao H J, Li H G, Yan L, Li C 2016 Cyber Secur. Data Govern. 35 8
Google Scholar
[12] Spie Photomask Technology V, International B 2015 SPIE Photomask Technology Monterey, California, USA, September 29–October 1, 2015 p271
[13] Lin J, Weber N, Maul J, Hendel S, Rott K, Merkel M, Schoenhense G, Kleineberg U 2007 Opt. Lett. 32 1875
Google Scholar
[14] 李慧, 吴晓斌, 韩晓泉, 马赫, 沙鹏飞 2023 中国激光 50 113
Li H, Wu X B, Han X Q, Ma H, Sha P F 2023 Chin. J. Lasers 50 113
[15] Yang L, Ma Z, Liu S, Jiao Q, Zhang J, Zhang W, Pei J, Li H, Li Y, Zou Y, Xu Y, Tan X 2022 Sensors 22 1113
Google Scholar
[16] García-Escudero A, Navarro-Bustos G, Umbría-Jiménez S, González-Cámpora R, Galera-Davidson H 2017 Rev. Soc. Esp. Quim. Clin. 50 113
[17] Goldberg K, Mochi I, Benk M, Allezy A, Dickinson M, Cork C, Zehm D, Macdougall J, Anderson E, Salmassi F, Chao W, Vytla V, Gullikson E, DePonte J, Jones M S G, Van Camp D, Gamsby J, Ghiorso W, Huang H, Cork W, Martin E, Van Every E, Acome E, Milanovic V, Delano R, Naulleau P, Rekawa S 2013 SPIE Advanced Lithography San Jose, California, February 24–28, 2013 p867919
[18] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙 2023 物理学报 72 054202
Google Scholar
Pan X Y, Bi X X, Dong Z, Geng Z, Xu H, Zhang Y, Dong Y H, Zhang C L 2023 Acta Phys. Sin. 72 054202
Google Scholar
[19] 范家东, 江怀东 2012 物理学报 61 218702
Google Scholar
Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702
Google Scholar
[20] Lee S, Guizar-Sicairos M, Ekinci Y 2014 SPIE Advanced Lithography San Jose, California, February 23–27, 2014 p904811–1
[21] Wojdyla A, Benk M, Naulleau P, Goldberg K 2018 Image Sensing Technologies: Materials, Devices, Systems, and Applications V Gaylord Palms Hotel, Orlando, April 16–19, 2018 p106560W
[22] Mochi I, Helfenstein P, Mohacsi I, Rajendran R, Kazazis D, Yoshitake S, Ekinci Y 2017 J. Micro/Nanolithogr. , MEMS, MOEMS 16 041003
Google Scholar
[23] Tanaka Y, Harada T, Amano T, Usui Y, Watanabe T, Kinoshita H 2014 Jpn. J. Appl. Phys. 53 06JC03
Google Scholar
[24] Miyakawa R, and Naulleau P 2019 Synchrotron Radiat. News 32 15
[25] Benk M, Wojdyla A, Chao W, Salmassi F, Oh S, Wang Y-G, Miyakawa R, Naulleau P, Goldberg K 2016 SPIE Advanced Lithography San Jose, California, February 21–25, 2016 p97761J–1
[26] Goldberg K, Benk M, Wojdyla A, Mochi I, Rekawa S, Allezy A, Dickinson M, Cork C, Chao W, Zehm D, Macdougall J, Naulleau P, Rudack A 2014 SPIE Advanced Lithography San Jose, California, February 23-27, 2014 p90480Y–1
[27] Li X L, Meng X Y, Wang Y, Liu H G, Zhang Y F, Zhang X Z, Zhao B, Zhao J, Tai R Z 2025 Phys. Scr. 100 045533
Google Scholar
[28] Wakonig K, Diaz A, Bonnin A, Stampanoni M, Bergamaschi A, Ihli J, Guizar-Sicairos M, Menzel A 2019 Sci. Adv. 5 eaav0282
Google Scholar
计量
- 文章访问数: 397
- PDF下载量: 8
- 被引次数: 0