The multilayer structure of extreme ultraviolet (EUV) masks limits the penetration depth of traditional inspection techniques at non-working wavelengths, thus hindering the effective examination of buried phase defects. Developing defect characterization techniques operating at the 13.5 nm wavelength is crucial for overcoming the quality bottleneck in EUV mask fabrication. Synchrotron radiation light source, with their stable EUV wavelength, cleanliness, and high power density, represents an ideal light source for EUV mask defect characterization research. In this work the current state of technology development for mask characterization at the world's four major synchrotron radiation facilities are systematically reviewed. Through comparative analysis, their working principles, technical advantages, and limitations are investigated in depth, and provide a forward-looking discussion on future trends. In response to the specific requirements for EUV mask defect detection and review, this paper discusses the requirements for the next-generation system platform, which integrates deep detection and review functions, develops novel compact light sources, and innovatively combines the advantages of various imaging techniques to improve the numerical aperture (
NA) of imaging systems. This aims to achieve a theoretical resolution of over 20 nm, meeting the future demands of the EUV lithography industry for higher
NA (>0.55) and shorter wavelengths (6.7 nm). Regarding the prospects of extending synchrotron radiation to industrial applications, a compact synchrotron radiation source, which can be developed on-site in semiconductor facilities, is introduced to accelerate the research and development cycle, while achieving the synergistic integration of imaging technologies. This paper focuses on the application of phase recovery principle of ptychography to Fourier synthesis illumination (FSI), achieving aberration correction in lens-based systems through synthetic aperture extension. In this paper, the working principles, performance benchmarks, technical challenges, and emerging development trends of existing synchrotron radiation-based EUV mask characterization techniques are investigated. It provides an important reference for designing next-generation EUV mask characterization system platforms.