-
基于保偏光子晶体光纤提出并构建了一种掺铒光纤激光扭转传感器。该传感器将基于保偏光子晶体光纤的Sagnac干涉仪引入掺铒光纤环形腔中作滤波器和扭转传感器件,利用光纤激光器线宽窄、信噪比高的优势,成功实现了高分辨率的光纤扭转传感器。实验系统研究了激光器的输出特性及扭转响应特性。研究结果表明,该扭转传感可以实现的最大线性测量范围可达480°(31.02rad/m) ,最大扭转传感灵敏度为0.032 nm/°(0.5nm/rad/m) ,分辨率高达0.681°(0.06rad/m)。同时,在20℃到95℃温度变化范围内,该传感器随温度的变化量仅为4×10-3 nm/℃,温度交叉敏感带来的扭转角度的测量误差仅为0.16 °/℃。其温度稳定性和温度对扭转角度测量造成的误差比现有报道分别提升了37.5倍和9.375倍。提出的光纤激光扭转传感器具有线性响应范围宽、分辨率高、温度稳定性好等显著优势,在航空航天、医疗微创手术、机械结构形变感知等领域具有巨大的应用潜力。Torsion information is important for rotating systems, industrial monitoring, transportation engineering and medical equipment. Optical fiber torsion sensors have significant advantages, such as immune to electromagnetic interference, small size and light weight. Sagnac loop interferometer (SI) torsion sensors have attracted much attention for their compact structure, high sensitivity, excellent stability and low cost. However, their nonlinear response restricts the measurement range, while the wide full width at half maximum and low signal-to-noise ratio (SNR) reduce the resolution of torsion sensors. To solve these problems, we propose a fiber ring laser torsion sensor (FRLTS) based on homemade polarization-maintaining photonic crystal fiber (PM-PCF). The torsion sensor introduces a PM-PCF based SI into the erbium-doped fiber ring cavity as a filter and torsion sensor device. Firstly, the interference spectrum of SI is derived by the transmission matrix method and simulated, and then the sensing principle of the sensor is obtained. Subsequently, the experimental system is set up to study the lasing output characteristics and torsion response of the FRLTS. By taking advantage of the narrow linewidth and high SNR of fiber ring lasers, a high-resolution fiber torsion sensor is successfully achieved. The experimental results demonstrate that the maximum linear torsion measurement range of the sensor can be extended to 480° (-260° to 220°), the maximum torsion sensitivity is 0.032 nm/°, and the resolution is as high as 0.681°. Furthermore, in the temperature range from 20℃ to 95℃, the temperature-induced wavelength variation is only 4×10-3 nm/℃, corresponding to a torsion angle measurement error of 0.16 °/℃. Compared to existing reports, its temperature stability is improved by 37.5 times, while the temperatureinduced error in angle measurements is reduced by 9.375 times. The proposed FRLTS not only successfully achieves high-resolution and widerange torsion sensing, but also effectively suppresses cross-sensitivity caused by temperature. Therefore, the torsion sensor has significant application potential in scenes such as aerospace and robotics where precise measurement of minute torsion angle is required in special environments.
-
[1] Cui J X, Cheng X, Gunawardena D S, Leong C Y, Dash J N, Lau A P T, Tam H Y 2024 Opt. Laser Technol. 174 110548
[2] Cao J Q, Wang B, Huang B S, Lou S Q, Sheng Z F, Chu P K 2024 J. Lightwave Technol. 42 5743
[3] López-Higuera J M, Cobo L R, Incera A Q, Cobo A 2011 J. Lightwave Technol. 29 587
[4] Yin G L, Xu Z, Ma J M, Zhu T 2022 J. Lightwave Technol. 41 1851
[5] Zheng Y C, Li J J, Liu Y, Li Y, Qu S L 2023 J. Lightwave Technol. 42 2513
[6] Duan J A, Xie Z, Wang C, Zhou J Y, Li H T, Luo Z, Chu D K, Sun X Y 2016 Opt. Laser Technol. 83 94
[7] Lin C Y, Wang L A, Chern G W 2001 J. Lightwave Technol. 19 1159
[8] Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249 (in Chinese) [朱涛,饶云江,莫秋菊 2006 物理学报 55 249]
[9] Ghasemi P, Yam S S H 2022 J. Lightwave Technol. 40 1224
[10] Yin G L, Fu Q J, Yang P X, Zhu T 2022 Opt. Laser Technol. 156 108461
[11] Cao J Q, Lou S Q, Huang B S, Gu S, Jia H Q, Sheng X Z, Wang X 2023 Opt. Fiber Technol. 80 103431
[12] Zhang R W, Liu X J, Shang Q H, Yang J R 2023 J. Lightwave Technol. 42 921
[13] Shi L L, Zhu T, Fan Y E, Chiang K S, Rao Y J 2011 Opt. Commun. 284 5299
[14] Lou S Q, Lu W L, Wang X 2013 Acta Phys. Sin. 62 090701 (in Chinese) [娄淑琴,鹿文亮,王鑫 2013 物理学报62 090701]
[15] Chen W G, Lou S Q, Wang L W, Zou H, Lu W L, Jian S S 2011 IEEE Photonics Technol. Lett. 23 1639
[16] Huang B, Shu X W 2018 Opt. Express 26 4563
[17] Htein L, Gunawardena D S, Liu Z Y, Tam H Y 2020 Opt. Express 28 33841
[18] Lin W H, Shao L Y, Vai M I, Shum P P, Liu S Q, Liu Y B, Zhao F, Xiao D R, Liu Y H, Tan Y D, Wang W Z 2021 J. Lightwave Technol. 39 3350
[19] Liu X J, Wang F J, Yang J R, Zhang X D, Du X L 2019 SENSORS-BASEL 19 3613
[20] Cao J Q, Guo Y Y, Gao W, Wang X, Lou S Q, Sheng Z F 2024 IEEE Sens. J. 25 4647
[21] Ma X K, Lou S Q, Cao J Q, Huang B S 2025 INFRARED PHYS TECHN 147 105776
[22] Guo Y Y, Du M Z, Gao W, Cao J Q, Sheng X Z, Lou S Q, Lian Z G 2025 Chin. J. Lasers 52 1306003 (in Chinese) [郭玉颖,杜梦珠,高炜,曹佳琦,盛新志,娄淑琴,廉正刚 2025 中国激光 52 1306003]
[23] Bo W, Liu B, Liu J, He X D, Yuan J H, Wu Q 2022 IEEE Sens. J. 22 7779
[24] Zu P, Chan C C, Jin Y X, Gong T X, Zhang Y F, Chen L H, Dong X Y 2011 IEEE Photonics Technol. Lett. 23 920
[25] Chen W G, Lou Q S, Wang L W, Zou H, Lu W L, Jian S S 2011 IEEE Photonics Technol. Lett. 23 1639
[26] Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors 7 23
[27] Shi L L, Zhu T, Fan Y E, Chiang K S, Rao Y J 2011 Opt. Commun. 284 5299
计量
- 文章访问数: 243
- PDF下载量: 0
- 被引次数: 0