-
量子通信具有感知窃听的功能,这是其区别于经典通信而独有的优势,能够为信息安全提供新的保障。在实际应用中,量子通信具有绝对安全性的前提是所有通信方均是合法通信方,然而,这在实际通信环境中难以保证,为量子保密通信带来安全性隐患。因此,在通信之前对通信方进行身份认证具有重要意义。量子身份认证利用量子力学基本原理在通信方之间实现单项或双向身份认证,并能确保身份认证码的绝对安全,在量子通信领域具有重要的研究价值。本文系统梳理了量子身份认证协议的研究历程,根据所需的不同量子资源对基于单光子、纠缠态、连续变量、混合型变量的量子身份认证协议进行介绍,又根据身份认证过程中使用的量子协议类型,介绍了基于量子密钥分发、量子安全直接通信、量子隐形传态以及乒乓协议框架的量子身份认证协议,并分析各类协议在效率、安全性及实用化方面的优缺点。最后,本文详细介绍了最新的量子身份认证协议-基于GHZ态的多方同步身份认证协议以及具有身份认证功能的极化-空间超编码的三方量子安全直接通信协议,并对量子身份认证的未来发展方向以及在量子通信领域的应用潜力进行展望。本综述可为未来量子身份认证的实用化发展提供理论支持。The absolute security of quantum communication protocols relies on a critical premise: all participating parties are legitimate users. Ensuring the legitimacy of participant identities is paramount in complex real-world communication environments. Quantum Identity Authentication (QIA), leveraging fundamental principles of quantum mechanics to achieve unilateral or mutual authentication between communicating parties, constitutes an indispensable core component for building a comprehensive quantum secure communication system. It holds significant research value within the field of quantum communication.
This review employs a comparative classification approach to systematically outline the research trajectory of QIA protocols. By categorizing protocols based on the required quantum resources and the types of quantum protocols employed, it analyzes the advantages and disadvantages of various categories in terms of efficiency, security, and practicality. Single-photon protocols demand low resources, are easy to implement, and compatible with existing optical components, but require high-efficiency single-photon detectors and exhibit weak noise resistance. Entangled-state protocols offer high security and strong eavesdropping resistance, particularly suitable for long-distance or multi-party authentication. However, they heavily depend on the preparation and maintenance of high-precision, stable multi-particle entanglement sources, resulting in high experimental complexity. Continuous-variable (CV) protocols achieve high transmission efficiency in short-distance metropolitan area networks and are compatible with classical optical communication equipment, making experiments relatively straightforward. Yet, they require high-precision modulation technology and are sensitive to channel loss. Hybrid protocols aim to balance resource efficiency and security while reducing reliance on a single quantum source, but their design is complex and may introduce new attack vectors. Quantum Key Distribution (QKD) framework protocols embed identity authentication within the key distribution process, making them suitable for scenarios requiring long-term secure key distribution, though they often depend on pre-shared keys or trusted third parties. Quantum Secure Direct Communication (QSDC) framework protocols integrate authentication with secure direct information transmission, offering high efficiency for real-time communication, but demand high channel quality. Measurement-Device-Independent QSDC (MDI-QSDC) represents a crucial development direction, resisting attacks on measurement devices. Quantum Teleportation (QT) framework protocols enable cross-node authentication and unconditional security, applicable to quantum relay networks, albeit with high experimental complexity. Entanglement swapping framework protocols can resist conspiracy attacks and are suitable for multi-party joint scenarios, but consume significant resources and rely on trusted third parties. Ping-pong protocol framework supports dynamic key updates and exhibits strong eavesdropping resistance, fitting for temporary authentication on mobile terminals, though it typically supports only unilateral authentication and requires a bidirectional channel.
Subsequently, this review details our research group's latest QIA protocols, including a multi-party synchronous identity authentication protocol based on Greenberger-Horne-Zeilinger (GHZ) states, and a tripartite QSDC protocol with identity authentication capabilities utilizing polarization-spatial super-coding. The GHZ-based multi-party synchronous authentication protocol leverages the strong correlations inherent in GHZ states to achieve simultaneous authentication among multiple parties. Through a carefully designed two-round decoy-state detection mechanism, it effectively resists both external eavesdropping and internal attacks originating from authenticated users, thereby enhancing the efficiency and security of identity management in large-scale quantum networks. The core innovation of the polarization-spatial super-coding tripartite QSDC protocol lies in its deep integration of the authentication process with information transmission utilizing the spatial degrees of freedom of single photons. This design accomplishes the identity verification of two senders and the transmission of secret information within a single protocol run, ensuring end-to-end security through a three-stage security check. This "authentication-as-communication" paradigm significantly improves the overall efficiency and practicality of the protocol. Its successful implementation also relies on advancements in quantum memory technology.
Finally, the review provides an outlook on future research directions for quantum identity authentication and its application potential within quantum communication. QIA research needs to focus on reducing resource dependency, exploring more efficient protocol designs, further enhancing protocol integration and robustness, prioritizing the development of protocols adaptable to real-world environments, and actively investigating integration with novel scenarios. This comprehensive review aims to provide theoretical research foundations and technical support for the practical development of future quantum identity authentication. -
[1] Goldenberg L, Vaidman L 1995 Phys. Rev. Lett. 75 1239
[2] Scarani V, Renner R 2008 Phys. Rev. Lett. 100 200501
[3] Liestyowati D 2020 J. Phys.: Conf. Ser. 1477 052062
[4] Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science Santa Fe, USA, November 20–22, 1994 p124
[5] Zhao Q C 2004 Quantum Computation and Quantum Information (I) — Quantum Computation (Beijing: Tsinghua University Press) (in Chinese) [赵千川 2004 量子计算和量子信息(一)——量子计算部分 (北京: 清华大学出版社)]
[6] Zhang Y D 2010 Advanced Quantum Mechanics 2nd ed. (Beijing: Peking University Press) (in Chinese) [张永德 2010 高等量子力学 第2版 (北京: 北京大学出版社)]
[7] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10-12, 1984 p175
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
[9] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557
[10] Bennett C H, Brassard G, Crépeau C, Jozsa R 1993 Phys. Rev. Lett. 70 1895
[11] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
[12] Pandey R K, Pathak A, Venugopalan A 2021 Quantum Inf. Process. 20 322
[13] Li J X, Wang Z M, Shi S S, Li Y N, Shang R M, Gu Y J 2022 EPL 140 58001
[14] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829
[15] Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648
[16] Wang T Y, Wei Z L, Gao F 2021 Quantum Inf. Process. 20 7
[17] Ju X X, Zhong W, Sheng Y B, Zhou L 2022 Chin. Phys. B 31 100302
[18] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
[19] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317
[20] Deng F G, Long G L 2004 Phys. Rev. A 69 052319
[21] Eusebi A, Mancini S 2009 Quantum Inf. Comput. 9 950
[22] Hu J Y, Li C L, Zhang C, Liu B, Guo G C 2016 Light Sci. Appl. 5 e16144
[23] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501
[24] Zhu F, Zhang W, Sheng Y B, Guo G C 2017 Sci. Bull. 62 1519
[25] Hu X M, Wang Y, Li Y, Zhang Q, Pan J W 2019 Quantum Eng. 1 e13
[26] Xu F H, Curty M, Qi B, Qian L, Lo H K 2020 Rev. Mod. Phys. 92 025002
[27] Chen Y A, Zhang Q, Chen T Y, Pan J W 2021 Nature 589 214
[28] Yin Z Q, Li F L, Chen Y A, Pan J W 2021 Fundam.. Res. 1 93
[29] Kwek L C, Cao L, Luo Y, Wang Y, Sun S H, Liu X, Lai J, Oh C H 2021 AAPPS Bull. 31 15
[30] Wang X F, Sun X J, Liu Y X, Wang W, Kan B X, Dong P, Zhao L L 2021 Quantum Eng. 3 e73
[31] Hajji H, El Baz M 2021 Quantum Inf. Process. 20 4
[32] Zhang C Y, Li C L, Xu J S, Li C F, Guo G C 2021 Quantum Inf. Process. 20 146
[33] Jin A R, Li Y, Zhang Y, Pan J W 2021 Phys. Rev. Appl. 16 034017
[34] Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154
[35] Liu B, Gao Z, Xiao D, Huang W, Zhang Z, Xu B J 2022 Sci. China Phys. Mech. Astron. 65 240312
[36] Liang K X, Li Z Q, Liu J, Wang Q L 2022 Phys. Rev. Appl. 18 054077
[37] Zeng P, Zhou H, Zhang W, Xu B J, Liu B, Gao Z 2022 Nat. Commun. 13 3903
[38] Zhu H T, Zhang C M, Pei C X, Li H W 2022 PRX Quantum 3 020353
[39] Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12
[40] Qi R Y, Sun Z, Lin Z, Niu J L, Hao P L, Song L J, Gao F 2019 Light Sci. Appl. 8 22
[41] Long G L, Zhang H R 2021 Sci. Bull. 66 1267
[42] Liu X, Li Z Q, Wang Q L 2021 Sci. China Phys. Mech. Astron. 64 120311
[43] Cao Z W, Yao F W, Xiao X Q 2021 Phys. Rev. Appl. 16 024012
[44] Zhang H R, Zhou L, Sheng Y B, Long G L 2022 Light Sci. Appl. 11 83
[45] Liu X, Li Z Q, Wang Q L 2022 Sci. China Phys. Mech. Astron. 65 120311
[46] Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367
[47] Zhou L, Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311
[48] Ying J W, Zhou L, Sheng Y B 2022 Chin. Phys. B 31 120303
[49] Niu J L, Liu X C 2022 EPL 139 38001
[50] Long G L, Zhou L, Sheng Y B 2022 Phys. Rev. Appl. 36 82
[51] Das N, Paul G 2022 EPL 138 48001
[52] Cao Z W, Yao F W, Xiao X Q 2023 Laser Phys. Lett. 20 045201
[53] Zhou L, Sheng Y B, Long G L 2023 Phys. Rev. Appl. 19 014036
[54] Dŭsek M, Haderka O, Hendrych M, Gisin N 1999 Phys. Rev. A 60 149
[55] Zeng G H, Zhang W P 2000 Phys. Rev. A 61 022303
[56] Ljunggren D, Bourennane M, Karlsson A 2000 Phys. Rev. A 62 022305
[57] Shi B S, Jiang Y K, Guo G C 2001 Phys. Lett. A 281 83
[58] Zhang H, Ji Z, Wang H, Wu W 2021 China Commun. 16 1
[59] Tsai C W, Hwang T, Kuo L J 2011 Commun. Theor. Phys. 56 1023
[60] Li J X, Zhang Y S, Guo G C 2021 EPL 133 20004
[61] Dutta A, Pathak A 2022 Quantum Inf. Process. 21 369
[62] Crépeau C, Salvail L 1995 International Conference on the Theory and Applications of Cryptographic Techniques (Berlin: Springer) p133
[63] Zeng G H, Wang X B 1998 arXiv:quant-ph/9812022 [quant-ph]
[64] Zhu D X, Zhao Z L, Zhang H J, Zhou Z Q, Li Y B, Zhao J, Song L J, Zheng J 2025 J. King Saud Univ. Comput. Inf. Sci. 37 57
[65] Zhao W, Shi R H, Shi J J , Huang P, Guo Y, Huang D 2021 Phys. Rev. A 103 012410
[66] Li Q, Wu J J, Quan J Y, Shi J J, Zhang S C 2022 IEEE Trans. Inf. Forensics Security 17 3264
[67] Zhang X L 2009 Chin. Sci. Bull. 54 2018
[68] Hong C H, Heo J, Jang J G, Kwon D 2017 Quantum Inf. Process. 16 236
[69] Zawadzki P 2019 Quantum Inf. Process. 18 7
[70] González-Guillén C E, González Vasco M I, Johnson F, Pérez del Pozo Á L 2021 Entropy 23 389
[71] Calsi D L, Kohl P 2024 Quantum Inf. Process. 23 357
[72] Rao B D, Jayaraman R 2023 Quantum Inf. Process. 22 92
[73] Lee H, Lim J, Yang H J 2006 Phys. Rev. A 73 042305
[74] Zhang Z J, Liu J, Wang D, Shi S H 2007 Phys. Rev. A 75 026301
[75] Chang Y, Xu C X, Zhang S B 2014 Chin. Sci. Bull. 59 2541
[76] Zhang S S, Chen Z K, Shi R H 2020 Int. J. Theor. Phys. 59 236
[77] Dutta A, Pathak A 2023 Quantum Inf. Process. 22 13
[78] Ma H Q, Huang P, Bao W S, Zeng G H 2016 Quantum Inf. Process. 15 2605
[79] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen, C S, Andersen U L 2015 Nat. Photon. 9 397
[80] Xu F H, Curty M, Qi B, Qian L, Lo H K 2015 Nat. Photon. 9 772
[81] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photon. 9 773
[82] Chen Z P, Yao F W, Xiao X Q 2024 Laser Phys. Lett. 21 115201
[83] Liu W J, Chen H W, Li Z Q 2009 Chin. Phys. B 18 4105
[84] Zhu H F, Wang L W, Zhang Y L 2020 Quantum Inf. Process. 19 381
[85] Wang J, Zhang Q, Tang C J 2006 Chin. Phys. Lett. 23 2360
[86] Yuan H, Liu Y M, Pan G Z 2014 Quantum Inf. Process. 13 2535
[87] Curty M, Santos D J 2001 Phys. Rev. A 64 062309
[88] Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306
[89] Chang Y, Li X H, Zhang Z J 2015 Chin. Phys. B 24 050307
[90] Zhou Z R, Sheng Y B, Niu P H 2020 Sci. China Phys. Mech. Astron. 63 230362
[91] Das N, Paul G 2022 Quantum Inf. Process. 21 260
[92] Li G D, Liu J C, Wang Q L, Sun W Q 2024 IEEE Commun. Lett. 28 473
[93] Zhou N R, Zeng G H, Zeng W J, Zhu F C 2005 Opt. Commun. 254 380
[94] Xin X J, He F, Qiu S J, Li C Y, Li F G 2024 Chin. J. Phys. 92 664
[95] Yang Y G, Wen Q Y 2009 Chin. Phys. B 18 3233
[96] Zhang Z S, Zeng G H, Zhou N R, Xiong J 2006 Phys. Lett. A 356 199
[97] Wang X F, Gu S P, Sheng Y B, Zhou L 2023 EPL 142 68002
[98] Zhang Q, Du M M, Zhong W, Sheng Y B, Zhou L 2024 Ann. Phys. (Berlin) 536 2300407
[99] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2016 Nat. Photon. 8 234
[100] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602
[101] Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I 2017 Science 357 1392
[102] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41
[103] Jin M, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2022 Sci. Bull. 67 676
计量
- 文章访问数: 12
- PDF下载量: 0
- 被引次数: 0