-
中性束注入是托卡马克装置中加热等离子体的主流辅助手段.射频负氢离子源作为中性束注入系统的关键前端部件,其性能直接影响中性束的质量.目前,提升负氢离子源性能仍是亟待深入研究的课题.为此,本文针对双驱动负氢离子源,建立了一个三维流体模型,用于模拟和优化表面产生机制下的负离子密度分布.首先,对比分析了体产生与表面产生两种机制下的等离子体参数,结果表明表面产生机制获得的负离子密度比体产生机制高出一个数量级.然而,受过滤磁场影响,引出区附近的负离子密度分布呈现不对称性.为改善该不对称性,在表面产生机制的基础上,提出了两种优化方案:(1)在低密度侧增加射频源功率;(2)在扩散区引入隔板结构.模拟结果显示,两种方案均显著改善了负离子密度分布的对称性.最后还提出了在扩散区背板添加磁屏蔽的方式来进一步优化负氢离子密度数值,可以将扩散区下游的负离子密度提高69%.In neutral beam injection (NBI) – the primary auxiliary heating method for tokamak plasmas – the negative hydrogen ion source (NHIS) functions as a critical front-end component governing neutral beam quality. The performance of NHIS remains a key challenge. This work presents a 3D fluid model developed for a double-driver NHIS to simulate and optimize surface-generated negative hydrogen ion density. A comparison of plasma parameters between the NHIS with Cs and without Cs demonstrates that surface generation yields negative ion density one order of magnitude greater than volume generation. However, the presence of the magnetic filter field induces asymmetry in negative ion density within the extraction region. To improve this asymmetry, two approaches are proposed: (1) increasing the power of one of the drivers and (2) adding a spacer plate to the expansion region. Both approaches significantly improve the symmetry of negative hydrogen ion. Finally, adding a magnetic shield to the back plate of the expansion region further optimizes negative hydrogen ion density, yielding a 69% increase downstream.
-
Keywords:
- Neutral beam injection system /
- negative hydrogen ion source /
- 3D fluid modeling /
- negative ion
-
[1] Zhang W, Zhang X J, Liu L N et al. 2023 Acta Phys. Sin. 72 215201
[2] Sun Y X, Huang J, Gao Wei et al. 2023 Acta Phys. Sin. 72 215203
[3] Kuriyama M, Akino N, Ebisawa N et al. 1998 J. Nucl. Sci. Technol. 35 739
[4] Wesson J 2004 Tokamaks [M] Oxford, UK: Oxford University Press
[5] Takeiri Y, Morita S, Ikeda K, et al. 2007 Nucl. Fusion 47 1078
[6] Kuriyama M, Akino N, Ebisawa N et al. 1998 J. Nucl. Sci. Technol. 35 739
[7] Franzen P, Falter H D, Fantz U et al. 2007 Nucl. Fusion 47 264
[8] Song S S, Yang W, Liu W, et al. 2021 Plasma Phys. 28 073512
[9] Pamela J 1995 Plasma Phys. Control. Fusion 37 A325
[10] Bacal M, Nishiura M, Sasao M, Hamabe M, Wada M, Yamaoka H 2002 Rev Sci Instrum 73 903
[11] Bacal M 2006 Nucl. Fusion 46 S250
[12] Berger M, Fantz U, Christ-Koch S and NNBI Team 2009 Plasma Sources Sci. Technol. 18 025004
[13] Heinemann B, Fantz U, Kraus W, Schiesko L, Wimmer C, Wünderlich D, Bonomo F, Fröschle M, Nocentini R and Riedl R 2017 New J. Phys. 19 015001
[14] Wimmer C, Schiesko L, Fantz U 2016 Rev. Sci. Instrum. 87 02B310
[15] (Germany)
[16] He Z Q, Yang W, Gao F, Du C R, Wang Y N 2024 Phys. Plasmas 31 043501
[17] Cristofaro S, Friedl R, and Fantz U 2021 Plasma 4 94
[18] Fubiani G and Boeuf J P 2013 Phys. Plasmas 20 113511
[19] Taccogna F, Schneider R, Longo S, Capitelli M 2008 Phys. Plasmas 15 103502
[20] Yang C, Liu D G, Wang H H et al. 2013 Acta Phys. Sin. 62 025206
[21] Yang C, Liu D G, Wang H H et al. 2012 Acta Phys. Sin. 61 235201
[22] Fukumasa O and Nishida R 2006 Nucl. Fusion 46 S275
[23] R Gutser, D Wünderlich, U Fantz and the NNBI-Team 2009 Plasma Phys. Control. Fusion 51 045005
[24] Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J and Wang Y N 2023 Plasma Sci. Technol. 25 105601
[25] Boeuf J P, Hagelaar G J M, Sarrailh P, Fubiani G and Kohen N 2011 Plasma Sources Sci. Technol. 20 015002
[26] Petrov G M and Giuliani J L 2001 J. Appl. Phys. 90 619
[27] Janev R K, Reiter D and Samm U 2003 Collision Processes in Low-Temperature Hydrogen Plasma (Forschungszentrum,Zentralbibliothek)
[28] Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B and Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913 (2008)
[29] Janev R K, Langer W D, Evans K and Post D E 1989 Elementary Processes in Hydrogen–Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Berlin: Springer)
[30] Hjartarson A T, Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008
[31] Celiberto R, Janev R K, Laricchiuta A, Capitelli M, Wadehra J M and Atems D E 2001 At. Data Nucl. Data Tables 77 161
[32] Celiberto R, Capitelli M and Laricchiuta A 2002 Phys. Scr. T96 32
[33] Bowers M T, Elleman D D and King J 1969 J. Chem. Phys. 50 4787
[34] Matveyev A A and Silakov V P 1995 Plasma Sources Sci. Technol. 4 606
[35] Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368
[36] Booth J P and Sadeghi N 1991 J. Appl. Phys. 70 611
[37] Gorse C, Capitelli M, Bacal M, Bretagne J and Lagana A 1987 Chem. Phys. 117 177
[38] Averkin S N, Gatsonis N A and Olson L 2015 IEEE Trans. Plasma Sci. 43 1926
[39] Hiskes J R and Karo A M 1989 Appl. Phys. Lett. 54 508
[40] Eerden M J J, Van de Sanden M C M, Otorbaev D K and Schram D C 1995 Phys. Rev. A 51 3362
[41] Seidl M, Cui H L, Isenberg J D, et al. 1996 J. Appl. Phys. 79 2896
[42] Zhang Y R, Wang X, Yang W, Gao F and Wang Y N 2021 Plasma Sources Sci. Technol. 30 075028
[43] Fubiani G and Boeuf J P 2015 Plasma Sources Sci. Technol. 24 055001
[44] Franzen P et al. 2014 Plasma Phys. Control. Fusion 56 025007
计量
- 文章访问数: 270
- PDF下载量: 10
- 被引次数: 0