-
燃烧场温度与气体组分浓度的二维分布对发动机燃烧效率以及性能评估具有重要意义. 本文提出一种基于自适应区域权重混合模型的燃烧场温度和气体组分浓度二维重建方法, 提高复杂突变燃烧场重建精度. 通过区域权重机制将多项式模型与高斯径向基函数模型结合为混合模型, 并自适应迭代计算区域权重矩阵. 一方面通过区域权重矩阵保证了混合模型在兼顾全局特征的同时, 提高混合模型细节特征的描述能力; 另一方面, 在残差函数中加入区域权重正则化方法, 提升算法的精度. 数值模拟了三种燃烧场分布, 通过对比验证了混合模型的表征能力和重建精度, 结果表明, 混合模型算法重建误差低于单一模型及传统ART算法, 其温度、浓度分布重建最大误差分别为3.31%和7.13%. 并在标准McKenna燃烧器上搭建了扫描式TDLAS测量平台及热电偶测量平台对该方法进行实验验证, 重建结果与实际分布一致性较好, 1800 K下中心温度与热电偶测量结果偏差为10 K, 验证了该方法的有效性, 可为发动机燃烧场测量分析提供有效的参考.
Diagnosis of combustion flow fields in aeroengines, scramjets, and related systems plays a crucial role in understanding combustion mechanisms, evaluating combustion stability and performance, and and is also a major challenge in the development of advanced propulsion technologies. Among the non-intrusive diagnostic approaches, laser absorption spectroscopy has become one of the most representative techniques. In particular, tunable diode laser absorption spectroscopy (TDLAS) offers advantages such as a compact system architecture, easy miniaturization, strong environmental adaptability, and the capability of simultaneous temperature and concentration measurements. By employing multiple laser beams intersecting at different angles and collecting absorption spectra along various paths, the two-dimensional distribution of flow-field parameters can be reconstructed using computed tomography (CT) algorithms. However, traditional nonlinear tomographic algorithms based on polynomial models encounter difficulties in reconstructing flow fields with steep gradients. To solve this problem, we propose a hybrid reconstruction method that integrates a regional weighting mechanism. In this framework, the polynomial model is combined with a Gaussian radial basis function (RBF) model, and a regional weight matrix is iteratively updated in an adaptive manner. The regional weight matrix is determined by introducing perturbations into the current temperature field and jointly considering its temperature gradient. This design allows the hybrid model to capture global features while enhancing its ability to resolve local details. In addition, a regional weight regularization term is incorporated into the residual function to further improve reconstruction accuracy. To validate the proposed approach, numerical simulations are conducted on three representative combustion field distributions, and comparisons are made between polynomial model, RBF model, and traditional algebraic reconstruction technique (ART) algorithms. The results demonstrate that the hybrid model achieves higher representational capability and reconstruction accuracy, with maximum temperature and concentration errors reduced to 3.31% and 7.13% (for the Top-Hat case), respectively. A scanning TDLAS measurement platform and a thermocouple measurement platform are built on a standard McKenna burner to experimentally verify the method. The reconstructed distribution has good consistency with the experimental results, and the deviation between the reconstructed 1800 K central temperature and the thermocouple measurement value is only 10 K. These findings verify the effectiveness of the proposed method and highlight its potential as a reliable tool for combustion field diagnostics in propulsion systems. -
Keywords:
- field distribution reconstruction /
- hybrid model /
- regional weighting /
- regularization method
-
图 5 三种分布不同方法重建结果 (a) 四种算法的单高斯峰温度浓度重建结果; (b) 四种算法的双高斯峰温度浓度重建结果; (c) 四种算法的Top-Hat分布温度浓度重建结果
Fig. 5. Reconstruct results of three distribution: (a) Reconstruction results of single peak distribution; (b) reconstruction results of double peak distribution; (c) reconstruction results of Top-Hat distribution.
图 6 算法温度、浓度重建误差 (a) 温度分布重建误差; (b) 浓度分布重建误差; (c) 中心区域温度重建误差; (d) 中心区域浓度重建误差
Fig. 6. Temperature and concentration reconstruction errors: (a) Temperature distribution reconstruction error; (b) concentration distribution reconstruction error; (c) central region temperature reconstruction error; (d) central region concentration reconstruction error.
表 1 所选吸收线光谱参数
Table 1. Spectral parameters of absorption line.
v0/cm–1 S(T0)/(cm–2·atm–1) E'' 7467.7695 1.2174×10–5 2551.4835 7444.3961 0.0011 1790.7113 7185.5962 0.0195 1045.058 6807.8350 6.1737×10–7 3319.4485 -
[1] Mitani T, Kouchi T 2005 Combust. Flame. 142 187
Google Scholar
[2] Micka D J, Driscoll J F 2009 Proc. Combust. Inst. 32 2397
Google Scholar
[3] Cao Z B, Li J, Song W Y, Li J P, Zhou Q, Wang C Z, Xu Z Y, Meng G, Hou K Y, Ding P J 2025 Energy 322 135458
Google Scholar
[4] Li B, Zhang D Y, Liu J X, Tian Y F, Gao Q, Li Z S 2019 Appl. Sci. 9 1906
Google Scholar
[5] Liu C, Xu L J 2019 Appl. Spectrosc. Rev. 54 1
Google Scholar
[6] Alden M, Bood J, Li Z, Richter M 2011 Proc. Combust. Inst. 33 69
Google Scholar
[7] Hosseinnia A, Raveesh M, Dominguez A, Ruchkina M, Linne M, Bood J 2022 Opt. Express 30 32204
Google Scholar
[8] Bohlin A, Nordstrom E, Carlsson H, Bai X S, Bengtsson P E 2013 Proc. Combust. Inst. 34 3629
Google Scholar
[9] Zhang Y, Zhang T L, L H 2021 Spectrochim. Acta Part B At. Spectrosc. 181 106218
Google Scholar
[10] Kiefer J, Troeger J W, Li Z, Seeger Z, Alden M, Leipertz A 2012 Combust. Flame. 159 3576
Google Scholar
[11] Tripathi M M, Srinivasan K K, Krishnan S R 2013 Fuel 106 318
Google Scholar
[12] Fu J, Tang C L, Jin W, Thi L D, Huang Z H 2013 Int. J. Hydrogen Energy 38 1636
Google Scholar
[13] Yamammoto K, Isii S, Ohnishi M 2011 Proc. Combust. Inst. 33 1285
Google Scholar
[14] Jeon M G, Deguchi Y, Kamimoto T, Doh D H, Cho G R 2017 Appl. Therm. Eng. 115 1148
Google Scholar
[15] Zhou W B, Cao Z, Zhao K, Wang Z C, Xu L J 2024 IEEE Trans. Instrum. Meas 73 1
[16] Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205
Google Scholar
[17] Ma L, Cai W W 2008 Appl. Opt. 47 3751
Google Scholar
[18] Wang Z Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K, 2020 Fuel 268 117370
Google Scholar
[19] Gao X, Cao Z, Tian Y, Xu L J 2021 IEEE Int. Conf. Imaging Syst. Tech(IST). 2021 1
[20] Yang H Q, Wang Z H, Song K L 2022 Eng. Comput. 38 2469
Google Scholar
[21] 黄安 2023 博士学位论文 (合肥: 中国科学技术大学)
Huang A 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[22] Shaddix C R 2017 10th U. S. National Combustion Meeting College Park, Maryland, USA, April 23–24, 2017 p2356
计量
- 文章访问数: 263
- PDF下载量: 4
- 被引次数: 0








下载: