-
The photon blockade effects in a system consisting of an artificial giant atom coupled to three cavities are investigated. By solving the Schrödinger equation, we have obtained the steady-state probability amplitudes of the system and derived the analytical expressions for the equal-time second-order correlation function. Based on these analytical expressions, the optimal conditions for the photon blockade under different driving conditions are derived in detail. We first examine the energy spectrum and transition pathways for the single-photon and two-photon excitations under the case of weak driving the cavity mode, and then investigate the photon statistical properties . It is demonstrated that the optimal conventional photon blockade can be achieved by selecting appropriate driving detunings, characterized by the equaltime second-order correlation function of g(2) (0) ≈ 10-3.4. Remarkably, we observe that both cavities of the system exhibit photon blockade effects robust against the weak driving. It also can be found that the photon blockade phenomenon becomes more pronounced while maintaining its robustness to the weak driving with the increase of the coupling strength between the artificial giant atom and cavities. Furthermore, we consider the case of simultaneously driving both the artificial giant atom and cavity modes. The unique multi-point coupling characteristics of the artificial giant atom provide additional transition pathways for photons, allowing us to exploit the resulting quantum interference to further enhance photon blockade. When the system satisfies both the optimal parametric conditions for the conventional and unconventional blockade effects, one cavity exhibits exceptional photon blockade with g(2) (0) ≈ 10-6.5. This research significantly relaxes the stringent parameter requirements for the experimental realization of single-photon sources and provides a theoretical support for improving their quality, which is crucial for achieving high-performance single-photon source.
-
[1] Couteau C, Barz S, Durt T, Gerrits T, Huwer J, Prevedel R, Rarity J, Shields A, Weihs G 2023 Nat.
[2] Rev. Phys. 5 326
[3] Couteau C, Barz S, Durt T, Gerrits T, Huwer J, Prevedel R, Rarity J, Shields A, Weihs G 2023 Nat.
[4] Tomm N, Javadi A, Antoniadis N O, Najer D, Löbl M C, Korsch A R, Schott R, Valentin S R, Wieck
[5] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026
[6] Rev. Phys. 5 354
[7] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46
[8] A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399
[9] Kimble H J 2008 Nature 453 1023
[10] Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33
[11] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod.
[12] Imamoğlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467
[13] Werner M J, Imamoğlu A 1999 Phys. Rev. A 61 011801
[14] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[15] Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819
[16] Phys. 81 1301
[17] Brecha R J, Rice P R, Xiao M 1999 Phys. Rev. A 59 2392
[18] Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev.
[19] Shen H Z, Zhou Y H, Yi X X 2014 Phys. Rev. A 90 023849
[20] Majumdar A, Gerace D 2013 Phys. Rev. B 87 235319
[21] Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715
[22] Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601
[23] Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802
[24] A 102 033713
[25] Sarma B, Sarma A K 2017 Phys. Rev. A 96 053827
[26] Shen H Z, Shang C, Zhou Y H, Yi X X 2018 Phys. Rev. A 98 023856
[27] Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824
[28] Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P,
[29] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121
[30] Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299
[31] Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808
[32] Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332
[33] Zheng C M, Zhang W, Wang D Y, Han X, Wang H F 2023 New J. Phys. 25 043030
[34] Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601
[35] Chen M, Tang J, Tang L, Wu H, Xia K 2022 Phys. Rev. Res. 4 033083
[36] Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601
[37] Lu Y W, Liu J F, Li R H, Wu Y X, Tan H S, Li Y Y 2022 New J. Phys. 24 053029
[38] Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643
[39] Zhang Z Q 2025 Acta Phys. Sin. 74 164204 (in Chinese) [张志强 2025 物理学报 74 164204]
[40] Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) [李宏, 张
[41] Hou R, Zhang W, Han X, Wang H F, Zhang S 2025 Sci. Rep. 15 5145
[42] Qiao X, Yao Z, Yang H 2024 Phys. Rev. A 110 053702
[43] Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7
[44] Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707
[45] Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys.
[46] Hamsen C, Tolazzi K N, Wilk T, Rempe G 2017 Phys. Rev. Lett. 118 133604
[47] Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601
[48] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press). P134
[49] 斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203]
[50] Rabl P 2011 Phys. Rev. Lett. 107 063601
[51] Redchenko E S, Zens M, Žemlička M, Peruzzo M, Hassani F, Sett R, Zieliński P, Dhar H S, Krimer
[52] Ma K J, Liu J, Cai Y, Tan L 2025 Physica Scripta 100 025109
[53] Stewart M, Kwon J, Lanuza A, Schneble D 2020 Phys. Rev. Res. 2 043307
[54] Krinner L, Stewart M, Pazmiño A, Kwon J, Schneble D 2018 Nature 559 589
[55] Hood J D, Goban A, Asenjo-Garcia A, Lu M, Yu S P, Chang D E, Kimble H 2016 Proc. Natl. Acad.
[56] Rev. Lett. 134 183601
[57] Scigliuzzo M, Calajò G, Ciccarello F, Perez Lozano D, Bengtsson A, Scarlino P, Wallraff A, Chang
[58] Ferreira V S, Banker J, Sipahigil A, Matheny M H, Keller A J, Kim E, Mirhosseini M, Painter O
[59] D O, Rotter S, Fink J M 2025 Phys. Rev. Lett. 134 063601
[60] Sci. 113 10507
[61] D, Delsing P, Gasparinetti S 2022 Phys. Rev. X 12 031036
[62] Phys. Rev. X 11 041043
[63] [64]
计量
- 文章访问数: 200
- PDF下载量: 6
- 被引次数: 0