搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时锁定1550 nm单光子线偏振态

于波 银振强 丁伟杰 翟荣荣 张宏

引用本文:
Citation:

实时锁定1550 nm单光子线偏振态

于波, 银振强, 丁伟杰, 翟荣荣, 张宏

Real-time locking of 1550 nm single-photon linear polarization state

YU Bo, YIN Zhenqiang, DING Weijie, ZHAI Rongrong, ZHANG Hong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 针对环境扰动引起单光子偏振态随机漂移的问题, 本文提出了一种实时锁定1550 nm单光子线偏振态的实验系统. 通过使用单光子偏振调制技术操控偏振旋转器实时锁定任意1550 nm单光子线偏振态到同轴检偏器的光轴方向, 在2000 s内单光子偏振漂移限制在0.0011 rad以内, 这种具有稳定线偏振态的1550 nm单光子脉冲可以直接用作偏振编码或相位编码量子密钥分发系统的单光子源.
    The key security of quantum key distribution (QKD) is guaranteed by the basic principle of quantum mechanics, which makes it possible to combine information theory security communication with one-time encryption. The key is usually encoded on the polarization dimension or phase dimension of a single-photon. It is considered that the birefringence effect of single-mode fiber leads to a random variation of polarization state, which would induce the bit error rate. So it is of great significance to keep the single-photon linear polarization state stable for both polarization encoding QKD system and phase encoding QKD system. By using the single-photon polarization modulation technology, the single-photon linear polarization state periodically varies with the external modulation signal. The flicker noise is suppressed effectively, and the signal-to-noise ratio (SNR) of single-photon counting is increased as indicated by the phase-sensitive detection with a lock-in amplifier (LIA). The error signal is generated by demodulating the modulated single photons and it is used to lock an arbitrary 1550 nm single-photon linear polarization state to the optical axis of in-line polarizer (ILP). The modulation frequency reaches up to 5 kHz, which can eliminate the influence of low frequency flicker noise. The LIA demodulates the single-photon pulses by using 78.1 Hz filter bandwidth, with a time constant of 1 ms and a filter slope of 24 dB. The error signal with a signal-to-noise ratio(SNR) of 20 is shown in Fig. 3 of the main text. The zero-crossing point of error signal represents the single photon’s linear polarization state aligned to the optical axis of ILP. The linear slope around the zero-crossing point for the polarization state angle versus the error signal amplitude is 1.267 rad/V. When the negative feedback loop does not work, the polarization drift of single-photon pulses is 0.082 rad due to the random environmental noise. However, by using the single-photon polarization modulation technology and the precise and dynamic control of the polarization rotator, the polarization drift of stable single-photon pulse is limited to 0.0011 rad within 2000 s, 6.7×10–5 in an integration time of 128 ms. The advantages for the single-photon polarization modulation technology are as follows: i) the linear polarization state drift is compensated for real-time at the single-photon level; ii) single frequency polarization modulation can be extended to multiple frequency polarization modulation in order to achieve locking of multiple linear polarization states of single photons simultaneously; iii) these 1550 nm single-photon pulses with the 0.0011 rad linear polarization state stability can be directly used as the single-photon source in either polarization encoding or phase encoding QKD system.
  • 图 1  实时锁定1550 nm单光子线偏振态的实验装置(红色虚线代表光信号, 黑色实线代表电信号), 其中Iso为隔离开关; Att为衰减器; AM为强度调制器; PR为偏振旋转器; ILP为同轴检偏器; SPD为单光子探测器; FG为函数发生器; LIA为锁相放大器; Amp为放大器

    Fig. 1.  Experimental setup of real-time locking the 1550 nm single-photon linear polarization state (red dashed lines for the light signal, black solid lines for the electrical signal), where Iso represents isolator; Att represents attenuator; AM represents amplitude modulator; PR represents polarization rotator; ILP represents in-line polarizer; SPD represents single-photon detector; FG represents function generator; LIA represents lock-in amplifier; Amp represents amplifier.

    图 2  透射信号

    Fig. 2.  Transmission signal.

    图 3  误差信号

    Fig. 3.  Error signal.

    图 4  (a) 单光子偏振态未锁定和锁定的测量结果; (b) 单光子偏振态未锁定时误差信号的统计结果; 单光子偏振态锁定时误差信号的统计结果(c)和对应的阿伦偏差分析结果(d)

    Fig. 4.  (a) Measurement results of unlocked and locked single-photon polarization states; (b) statistics results of error signal for unlocked single-photon polarization state; statistics results of error signal for locked single-photon polarization state (c) and corresponding analysis results of Allan deviation (d).

  • [1]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [3]

    Li Y, Li Y H, Xie H B, Li Z P, Jiang X, Cai W Q, Ren J G, Yin J, Liao S K, Peng C Z 2019 Opt. Lett. 44 5262Google Scholar

    [4]

    Stein A, Grande I H L, Castelvero L, Pruneri V 2023 Opt. Express 31 13700Google Scholar

    [5]

    Wang Z X, Xu H X, Li J, Yu H C, Huang J Q, Han H, Wang C L, Zhang P, Yin F F, Xu K, Liu B, Dai Y T 2025 EPJ Quantum Technol. 12 47Google Scholar

    [6]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [7]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert Artur K, Pan J W 2020 Nature 582 501Google Scholar

    [8]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [9]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024

    [10]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [11]

    Zhu H T, Huang Y Z, Pan W X, Zhou C W, Tang J J, He H, Cheng M, Jin X D, Zou M, Tang S B, Ma X F, Chen T Y, Pan J W 2024 Optica 11 883Google Scholar

    [12]

    Mamdoohi G, Abas A F, Samsudin K 2012 Eng. Appl. Artif. Intell. 25 869Google Scholar

    [13]

    刘令令, 景明勇, 于波, 胡建勇, 肖连团, 贾锁堂 2015 激光与光电子学进展 52 072701Google Scholar

    Liu L L, Jing M Y, Yu B, Hu J Y, Xiao L T, Jia S T 2015 Laser Optoelectron. Prog. 52 072701Google Scholar

    [14]

    Xi L X, Zhang X G, Tian F, Tang X F, Weng X, Zhang G Y, Li X X, Xiong Q J 2010 IEEE Photon. J. 2 195Google Scholar

    [15]

    Asgari H, Khodabandeh M, Hajibaba S, Dadahkhani A H, Madani S A 2025 Indian J. Phys. 99 1471Google Scholar

    [16]

    唐鹏毅, 李国春, 高松, 余刚, 代云启, 相耀, 李东东, 张英华, 吴冰, 赵子岩, 高德荃, 刘建宏, 王坚 2018 光学学报 38 0106005Google Scholar

    Tang P Y, Li G C, Gao S, Yu G, Dai Y Q, Xiang Y, Li D D, Zhang Y H, Wu B, Zhao Z Y, Gao D Q, Liu J H, Wang J 2018 Acta Opt. Sin. 38 0106005Google Scholar

    [17]

    李鹏程, 刘琨, 江俊峰, 潘亮, 马鹏飞, 李志辰, 张炤, 李鑫, 刘铁根 2018 中国激光 45 0510002Google Scholar

    Li P C, Liu K, Jiang J F, Pan L, Ma P F, Li Z C, Zhang S, Li X, Liu T G 2018 Chin. J. Lasers 45 0510002Google Scholar

    [18]

    马兵斌, 柯熙政, 张颖 2019 中国激光 46 0106002Google Scholar

    Ma B B, Ke X Z, Zhang Y 2019 Chin. J. Lasers 46 0106002Google Scholar

    [19]

    夏骞, 张涛, 刘金璐, 杨杰, 何远杭, 黄伟, 李大双, 徐兵杰 2020 光学学报 40 1526001Google Scholar

    Xia Q, Zhang T, Liu J, Yang J, He Y H, Huang W, Li D S, Xu B J 2020 Acta Opt. Sin. 40 1526001Google Scholar

    [20]

    Huang T, Dong S L, Guo X J, Xiao L T, Jia S T 2006 Appl. Phys. Lett. 89 061102Google Scholar

    [21]

    王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂 2012 物理学报 61 204203Google Scholar

    Wang J J, He B, Yu B, Liu Y, Wang X B, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 204203Google Scholar

    [22]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129Google Scholar

  • [1] 蒋沛恒, 史朝督, 付士杰, 田浩, 盛泉, 史伟, 沈琪皓, 周鼎富, 姚建铨. 基于种子脉冲预整形的130 μJ线偏振单频12 μm纤芯铒镱共掺光纤激光器. 物理学报, doi: 10.7498/aps.74.20241371
    [2] 李宜奇, 孙晓兵, 郑小兵, 黄红莲, 刘晓, 提汝芳, 韦祎晨, 王宇轩. 近红外波长处金星(盘)线偏振度的敏感性分析. 物理学报, doi: 10.7498/aps.74.20250015
    [3] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器. 物理学报, doi: 10.7498/aps.71.20221259
    [4] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器. 物理学报, doi: 10.7498/aps.71.20220829
    [5] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建. 物理学报, doi: 10.7498/aps.65.130202
    [6] 陈国钧, 周巧巧, 纪宪明, 印建平. 用线偏振光产生可调矢量椭圆空心光束. 物理学报, doi: 10.7498/aps.63.083701
    [7] 周国泉. 线偏振拉盖尔-高斯光束的远场发散特性. 物理学报, doi: 10.7498/aps.61.024208
    [8] 林青. 多光子偏振态与单光子高维空间态之间的相互变换及其应用. 物理学报, doi: 10.7498/aps.60.084209
    [9] 黄翀, 陈海清, 廖兆曙, 赵爽. 高量级光衰减时对线偏振片组衰光系数的研究. 物理学报, doi: 10.7498/aps.59.1756
    [10] 漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪. 128 W单频线偏振光纤放大器特性研究. 物理学报, doi: 10.7498/aps.59.3942
    [11] 马海强, 王素梅, 吴令安. 基于偏振纠缠光子对的单光子源. 物理学报, doi: 10.7498/aps.58.717
    [12] 李建龙, 吕百达. 线偏振高斯光束通过复合型衍射光栅的传输特性. 物理学报, doi: 10.7498/aps.57.1656
    [13] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.57.7848
    [14] 郜 鹏, 姚保利, 韩俊鹤, 陈利菊, 王英利, 雷 铭. 菌紫质同线偏振全息记录时再现光偏振方向对衍射效率的调制. 物理学报, doi: 10.7498/aps.57.2952
    [15] 李建龙, 吕百达. 线偏振高斯光束通过条形浮雕光栅的传输. 物理学报, doi: 10.7498/aps.56.5778
    [16] 张方迪, 刘小毅, 张 民, 叶培大. 新型空气孔长方形排列单模单偏振光子晶体光纤的数值模拟. 物理学报, doi: 10.7498/aps.55.6447
    [17] 静国梁, 余 玮, 李英骏, 赵诗华, 钱列加, 田友伟, 刘丙辰. 非相对论线偏振激光下的J×B加热. 物理学报, doi: 10.7498/aps.55.3475
    [18] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, doi: 10.7498/aps.54.4141
    [19] 周国泉. 任意线偏振高斯光束的非傍轴传输. 物理学报, doi: 10.7498/aps.54.4710
    [20] 汪容. 双光子系统的波函数和偏振态. 物理学报, doi: 10.7498/aps.15.55
计量
  • 文章访问数:  286
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-06
  • 修回日期:  2025-09-28
  • 上网日期:  2025-10-10

/

返回文章
返回