搜索

x
中国物理学会期刊

低温化学气相沉积法可控合成二维铁电α-In2Se3

CSTR: 32037.14.aps.74.20251070

Controllable synthesis of two-dimensional ferroelectric α-In2Se3 by low-temperature chemical vapor deposition

CSTR: 32037.14.aps.74.20251070
PDF
HTML
导出引用
  • 二维铁电半导体α-In2Se3在新型电子器件中具有重要应用前景. 然而采用化学气相沉积法(CVD), 该材料通常需要高于650 ℃的高温. 本研究提出一种低温合成策略, 通过引入KCl/LiCl/NH4Cl三元催化剂体系, 在400—460 ℃ (优化条件440 ℃)制备α-In2Se3薄膜, 该工艺较传统方法降低温度200 ℃以上. 扫描电子显微镜(SEM)表征显示材料形貌可通过温度与气体流速协同调控, 从六边形薄片转变为连续均匀薄膜; 能量色散谱仪(EDS)分析表明元素比例接近理想化学计量比(In∶Se = 36.38∶63.62); 拉曼光谱(特征峰103/180/195 cm–1) 与X射线光电子能谱(XPS) (In∶Se = 1.92∶3.00) 共同证实材料为纯α相、化学计量比接近理想值. 基于此材料构建的阻变器件表现出模拟阻变的特性, 模拟了生物突触的长时程增强/抑制行为. 在人工神经网络仿真中, 对MNIST数据集的图像识别准确率均在90%以上. 该低温合成工艺突破高温限制, 为α-In2Se3在硅基神经形态计算芯片中的规模化集成提供可行路径.

     

    Two-dimensional ferroelectric α-In2Se3 possesses many fascinating physical properties. However, chemical-vapor-deposited ferroelectric α-In2Se3 typically requires high temperatures (>650 ℃). In this work, α-In2Se3 is synthesized at 400 to 460 ℃ by introducing a KCl/LiCl/NH4Cl ternary catalyst, resulting in a 200 ℃ reduction in growth temperature compared with ferroelectric α-In2Se3 synthesized by the traditional chemical vapor deposition (CVD) method. The surface morphology of the as-prepared material is controlled by temperature and gas flow rate. As the growth temperature increases from 400 to 460 ℃, the synthesized α-In2Se3 is changed from discrete hexagonal flakes to a continuous and uniform thin film, which is confirmed by the scanning electron microscope. Raman spectroscopy shows that the characteristic peaks of In2Se3 are located at 103, 180, and 195 cm–1, respectively, indicating that the CVD-grown In2Se3 is α-phase. Furthermore, energy dispersive spectrometer and X-ray photoelectron spectroscopy indicate that the elemental composition is close to the ideal stoichiometric ratio, confirming the successful synthesis of the α-In2Se3. Then, the as-prepared α-In2Se3 is transferred onto Si/SiO2 substrate for device fabrication. Atomic force microscope indicates that the film is uniform, with an approximate thickness of 63 nm. The fabricated two-terminal memristors exhibit analogous resistive switching behaviors. And such memristors are used to achieve synaptic functions of long-term potentiation/long-term depression. For artificial neural network simulations based on the synaptic memristors, the recognition accuracy for hand-written digit image exceeds 90%. This work provides a practical method for growing two-dimensional ferroelectric α-In2Se3 at low temperatures for applications in synaptic devices and neuromorphic computing.

     

    目录

    /

    返回文章
    返回