搜索

x
中国物理学会期刊

尘埃颗粒对低气压射频等离子体中非局域动理学的影响

CSTR: 32037.14.aps.74.20251096

Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma

CSTR: 32037.14.aps.74.20251096
PDF
HTML
导出引用
  • 低气压射频感性放电可以产生更均匀的单分散颗粒和等离子体, 因此常被用于纳米器件制造中. 纳米器件制造需要产生纳米到亚微米尺度的颗粒. 由于其通常带负电荷, 会显著影响等离子体的放电特性. 本文主要研究了尘埃颗粒的尺度和密度对低气压感性耦合等离子体中电子反弹共振加热效应以及基本等离子体性质的影响. 模拟结果表明, 随着颗粒半径或密度的增大, 在电子能量概率函数中以形成平台为特征的反弹共振加热效应逐渐受到抑制并最终消失, 导致电子温度下降、电子密度上升、颗粒表面电势增大, 而颗粒带电量随着颗粒密度的增大而减小, 随着颗粒半径的增大呈现非单调变化. 本研究指出, 由于颗粒存在引发的高能电子的损失可能会为低缺陷、单分散纳米颗粒的生长创造更有利的环境. 颗粒质量的提升对降低纳米器件中的陷阱密度以及增强其电学性能具有重要意义.

     

    Low-pressure radio-frequency inductively coupled discharges can produce uniformly distributed monodisperse particles and plasma, making them widely used in nanodevice fabrication. The manufacturing of nanodevices typically requires the generation of particles ranging from nanometer to submicron scales. These particles usually carry negative charges and can significantly influence the discharge characteristics of the plasma. This study investigates the effects of particle size and density on electron bounce resonance heating (BRH) and fundamental plasma properties in low-pressure inductively coupled plasmas (ICPs) by using a hybrid model. The hybrid model consists of kinetic equation, electromagnetic field equation, and global model equation. The simulation results show that as the dust radius or density increases, the BRH effect characterized by the formation of a plateau in the probability function of electron energy, is gradually suppressed and eventually disappears, accompanied by a decrease in electron temperature, an increase in electron density, and an increase in particle surface potential. The dust charge decreases with the increase of particle density, while exhibiting a nonmonotonic variation with particle radius. The results show that the loss of high-energy electrons caused by the dust particles may create a more favorable plasma environment for the growth of monodisperse nanoparticles with low defects. Such an improvement in particle quality is crucial for reducing trap densities and enhancing the electrical performance of nanoparticle-based electronic devices.

     

    目录

    /

    返回文章
    返回