搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态离子碰撞诱导氟甲烷分子三价离子解离

谭旭 房凡 张煜 孙德昊 吴怡娇 殷浩 孟天鸣 屠秉晟 魏宝仁

引用本文:
Citation:

高电荷态离子碰撞诱导氟甲烷分子三价离子解离

谭旭, 房凡, 张煜, 孙德昊, 吴怡娇, 殷浩, 孟天鸣, 屠秉晟, 魏宝仁

Dissociation of fluoromethane trication induced by highly charged ion collisions

TAN Xu, FANG Fan, ZHANG Yu, SUN Dehao, WU Yijiao, YIN Hao, MENG Tianming, TU Bingsheng, WEI Baoren
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 研究分子的碎裂机制以及碎片的动能分布,有助于理解其在等离子体物理、生物组织的辐射损伤和星际化学等方面的重要作用。本文利用冷靶反冲离子动量谱仪开展了3 keV/u的Ar8+离子束与氟甲烷气体分子束的碰撞实验,聚焦CH3F3+离子C-F键和C-H键断裂后形成H++CH2++F+这一三体碎裂通道,测得三个碎片离子的三维动量。借助离子-离子动能谱、Newton图和Dalitz图展示碎片的动能与动量关联,分析了H++CH2++F+通道的解离机制。研究发现,该通道存在协同碎裂以及通过中间体CH2F2+顺序碎裂两种解离方式,其中协同碎裂占主导地位。此外,实验上观测到两种不同动力学特征的协同碎裂过程,表明CH3F3+离子中H原子可以具有不同的化学环境,这可能是由于分子异构化产生不同分子构型或者Jahn-Teller效应使得分子产生不同C-H键所致。
    Investigating molecular fragmentation mechanisms and the kinetic energy distributions of fragments provides crucial insights into their roles in plasma physics, radiation-induced damage in biological tissues, and interstellar chemistry. In this study, we conducted collision experiments between 3 keV/u Ar8+ ions and CH3F molecules using a cold target recoil ion momentum spectrometer. We focused on the three-body fragmentation channel H+ + CH2+ + F+ resulting from C-F and C-H bond cleavage in CH3F3+ ions, and measured the three-dimensional momentum vectors of all fragment ions. The fragmentation mechanism involved was analyzed using ion-ion kinetic energy correlation spectra, Newton diagrams, Dalitz plots and other correlation spectra.
    Our results reveal two distinct dissociation mechanisms for the H+ + CH2+ + F+ channel, i.e., concerted and sequential fragmentation, with the former one being dominant. In the sequential fragmentation process, H+ and the intermediate CH2F2+ are firstly formed, followed by further fragmentation of the intermediates into CH2+ and F+. No sequential pathways involving HF2+ or CH32+ intermediates were identified. Furthermore, we observed two types of concerted fragmentation processes with different dynamical characteristics, suggesting that hydrogen atoms in CH3F3+ may occupy different chemical environments. This phenomenon could originate from either molecular isomerization producing different structural geometries or the Jahn-Teller effect leading to inequivalent C-H bonds. This study reveals the three-body dissociation dynamics of CH3F3+ induced by highly charged ion collisions, highlighting the significant role of the Jahn-Teller effect or molecular isomerization in the ionic dissociation of polyatomic molecules.
  • [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J. 2021 Nat. Commun. 12 1162

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129

    [9]

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401 (in Chinese)[张紫琪,闫顺成,陶琛玉,余璇,张少锋,马新文 2025 物理学报74 063401]

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, De Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London, Ser. A 161 220

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801

  • [1] 殷桂琴, 张蕾蕾, 脱升. 双频磁化容性耦合氩/甲烷等离子体放电特性. 物理学报, doi: 10.7498/aps.74.20250244
    [2] 张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文. 二价乙烷分子离子三体碎裂的解离机制研究. 物理学报, doi: 10.7498/aps.74.20250008
    [3] 景文泉, 贾利娟, 孙兆鹏, 赵松峰, 束传存. 超快强场相干调控氯溴甲烷分子的解离研究. 物理学报, doi: 10.7498/aps.73.20241401
    [4] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, doi: 10.7498/aps.73.20231377
    [5] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, doi: 10.7498/aps.72.20230676
    [6] 李桃桃, 苑航, 王兴, 张震, 郭大龙, 朱小龙, 闫顺成, 赵冬梅, 张少锋, 许慎跃, 马新文. 50-keV/u Ne8+离子碰撞导致的$\bf{{\text{C}}_3}{\text{H}}_4^{2 + }$三体解离机制. 物理学报, doi: 10.7498/aps.71.20212202
    [7] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, doi: 10.7498/aps.70.20201700
    [8] 吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋. 三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究. 物理学报, doi: 10.7498/aps.68.20182121
    [9] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [10] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, doi: 10.7498/aps.67.20181468
    [11] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析. 物理学报, doi: 10.7498/aps.67.20172163
    [12] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究. 物理学报, doi: 10.7498/aps.66.093101
    [13] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, doi: 10.7498/aps.65.053302
    [14] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离. 物理学报, doi: 10.7498/aps.65.224209
    [15] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, doi: 10.7498/aps.60.093401
    [16] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, doi: 10.7498/aps.55.2708
    [17] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, doi: 10.7498/aps.55.2210
    [18] 程珊华, 宁兆元, 黄峰. 等离子体增强反应蒸发沉积的氟掺杂氧化铟薄膜的性质. 物理学报, doi: 10.7498/aps.51.668
    [19] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, doi: 10.7498/aps.51.235
    [20] 王晓方, 陈时胜, 徐至展, 李跃林, 钱爱娣. 针孔透射光栅谱仪用于线聚焦激光等离子体研究. 物理学报, doi: 10.7498/aps.39.764
计量
  • 文章访问数:  156
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-05

/

返回文章
返回