搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元增强范德瓦尔斯光电探测器偏振性能研究进展

菅佳玲 钱科宇 王子坚 苏雨辰 翁正进 肖少庆 南海燕

引用本文:
Citation:

等离激元增强范德瓦尔斯光电探测器偏振性能研究进展

菅佳玲, 钱科宇, 王子坚, 苏雨辰, 翁正进, 肖少庆, 南海燕

Research Progress on Plasmonic-Enhanced Polarization Performance of van der Waals Photodetectors

JIAN Jialing, QIAN Keyu, Wang Zijian, SU Yuchen, WENG Zhengjin, XIAO Shaoqing, Nan Haiyan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 偏振探测是获取光矢量信息的重要手段,广泛应用于光通信、智能感知与生物传感等领域。二维范德瓦尔斯材料因其独特的各向异性与可调电学特性,为实现高性能偏振探测提供了新的材料平台,但这类材料存在本征吸收弱、响应效率有限等局限性。等离激元结构可在微纳尺度实现强局域光场调控,是突破上述局限性、提升探测性能的重要手段。本文系统梳理了等离激元微纳结构与范德瓦尔斯材料的光学耦合机制,分析了不同类型等离激元结构在各类偏振光探测中的作用与优势。最后,讨论了该方向在偏振敏感光通信、片上光计算与信息处理、仿真视觉与图像识别等前沿领域的应用前景,展望了未来研究面临的机遇与挑战。
    Polarization detection is a fundamental route to access the vectorial nature of light, underpinning advanced technologies in optical communication, intelligent sensing, and biosensing..Two-dimensional van der Waals materials, owing to their intrinsic anisotropy and tunable electronic properties, have emerged as a promising platform for high-performance polarization-sensitive photodetectors. Nevertheless, their intrinsically weak light absorption and limited photoresponse efficiency remain major bottlenecks. Plasmonic nanostructures, which enable strong localized field confinement and manipulation at the nanoscale, provide an effective strategy to overcome these limitations and substantially boost device performance. In this review, we systematically summarize the coupling mechanisms between plasmonic architectures and vdW materials, highlighting near-field enhancement, plasmon-induced hot-carrier generation, and mode-selective polarization coupling as key physical processes that enhance photocarrier generation and polarization extinction. Representative device implementations, including metallic gratings, hybrid nanoantennas, and chiral metasurfaces, are compared in terms of responsivity, detection speed, operating bandwidth, and polarization extinction ratio, revealing consistent improvements of one to two orders of magnitude over bare vdW devices. We further survey emerging applications in high-speed polarization-encoded optical communication, on-chip optical computing and information processing, and bioinspired vision and image recognition systems, where plasmonic-vdW hybrid detectors demonstrate unique advantages in miniaturization and energy efficiency. Finally, we discuss current challenges such as large-scale fabrication of uniform plasmonic arrays, spectral bandwidth broadening, and seamless integration with complementary photonic circuits, and outline future opportunities for next-generation polarization-resolved optoelectronic platforms.
  • [1]

    Sun Y L, Zhang X G, Cui T J, Jiang W X 2025 Adv. Funct. Mater. 35 2421870

    [2]

    Su C, Li M, Yan H, Zhang Y, Li H, Fan W, Bai W, Liu X, Wang Q, Yin S 2025 ACS Appl. Mater. Interfaces 17 5213

    [3]

    Wang F, Fang S, Zhang Y, Wang Q J 2025 Nat. Commun. 16 6791

    [4]

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 163201

    [5]

    Li X, Liu K, Wu D, Lin P, Shi Z, Li X, Zeng L, Chai Y, Lau S P, Tsang Y H Adv. Mater. 24 15717

    [6]

    Wu J, Wei M, Mu J, Ma H, Zhong C, Ye Y, Sun C, Tang B, Wang L, Li J, Xu X, Liu B, Li L, Lin H 2021 ACS Nano 15 15982

    [7]

    Wu J, Ye Y, Jian J, Yao X, Li J, Tang B, Ma H, Wei M, Li W, Lin H, Li L 2023 Nano Lett. 23 6440

    [8]

    Chang H, Hur W, Kang H, Jun B H 2025 Light-Sci. Appl. 14 79

    [9]

    Jian J, Liu R, Ye Y, Wu J, Deng Q, Wei M, Tang Y, Tang R, Sun B, Ma H, Shi Y, Zhong C, Sun C, Lin H, Li M, Li L 2024 Adv. Opt. Mater. 12 2400281

    [10]

    Im H, Bantz K C, Lee S H, Johnson T W, Haynes C L, Oh S H 2013 Adv. Mater. 25 2678

    [11]

    Wei H, Xu H 2014 Mater. Today 17 372

    [12]

    Lee J J, Han S J, Choi C, Seo C, Hwang S, Kim J, Hong J P, Jang J, Kyhm J, Kim J W, Yu B S, Lim J A, Wang G, Kang J, Kim Y, Ahn S K, Ahn J, Hwang D K 2025 Nat. Commun. 16 4624

    [13]

    Kwon S, Lee S Y, Choi S H, Kang J W, Lee T, Song J, Lee S W, Cho C H, Kim K K, Yee K J, Kim D W 2020 ACS Appl. Mater. Interfaces 12 44088

    [14]

    Alamri M, Liu B, Sadeghi S M, Ewing D, Wilson A, Doolin J L, Berrie C L, Wu J 2020 ACS Appl. Nano Mater. 3 7858

    [15]

    Jian J, Wu J, Zhong C, Ma H, Sun B, Ye Y, Luo Y, Wei M, Lei K, Liu R, Chen Z, Li G, Dai H, Tang R, Sun C, Li J, Li W, Li M, Lin H, Li L 2023 ACS Photonics 10 3494

    [16]

    Bai Q, Huang X, Guo Y, Du S, Sun C, Hu L, Zheng R, Yang Y, Jin A, Li J, Gu C 2023 Nano Res. 16 10272

    [17]

    Zhong C, Liao K, Dai T, Wei M, Ma H, Wu J, Zhang Z, Ye Y, Luo Y, Chen Z, Jian J, Sun C, Tang B, Zhang P, Liu R, Li J, Yang J, Li L, Liu K, Hu X, Lin H 2023 Nat. Commun. 14 6939

    [18]

    Drude P 1900 Ann. Phys.-Berlin 306 566

    [19]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282

    [20]

    Tong J, Suo F, Ma J, Tobing L Y M, Qian L, Zhang D H 2019 Opto-Electron. Adv. 2 180026

    [21]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131

    [22]

    Grundmann M (Grundmann M ed) 2021 The Physics of Semiconductors:An Introduction Including Nanophysics and Applications (Cham:Springer International Publishing) pp339-350

    [23]

    Maier S A (Maier S A ed) 2007 Plasmonics:Fundamentals and Applications (New York, NY:Springer US) pp65-88

    [24]

    He W D, Su D, Wang S J, Zhou H L, Chen W, Zhang X Y, Zhao N, Zhang T 2021 Infrared and Laser Eng. 50 120(in Chinese)[何伟迪, 苏丹, 王善江, 周桓立, 陈雯, 张晓阳, 赵宁, 张彤 2021 红外与激光工程 50 120]

    [25]

    Wang J, Jiao H X, Chen Y, Wu S Q, Wang X D, Zhang S K, Chu H J, Wang JL 2024 Acta Photonica Sin. 53 3(in Chinese)[王菁, 焦韩雪, 陈艳, 伍帅琴, 王旭东, 张书魁, 褚君浩, 王建禄 2024 光子学报 53 3]

    [26]

    Seied Ali Safiabadi T, Zhou W 2019 Nanophotonics 8 1199

    [27]

    Kasani S, Curtin K, Wu N 2019 Nanophotonics 8 2065

    [28]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685

    [29]

    Zhang X, Nie C, Jiang X, Zhu L, Wei X 2025 Adv. Opt. Mater. 13 2402794

    [30]

    Su J, Hou X, Dai N, Li Y 2024 Front. Phys. 19 63501

    [31]

    Amendola V, Pilot R, Frasconi M, Marago O M, Iati M A 2017 J. Phys.-Condes. Matter 29 203002

    [32]

    Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y 2011 Chem. Rev. 111 3669

    [33]

    Mie G 1908 Ann. Phys.-Berlin 330 377

    [34]

    Dorodnyy A, Smajic J, Leuthold J 2023 Laser Photon. Rev. 17 1

    [35]

    Ge L, Han D, Zi J 2015 Opt. Commun. 354 225

    [36]

    Kinsey N, Ferrera M, Shalaev V M, Boltasseva A 2015 J. Opt. Soc. Am. B 32 121

    [37]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496

    [38]

    Dai D, He S 2009 Opt. Express 17 16646

    [39]

    Zhu B Q, Tsang H K 2016 J. Lightwave Technol. 34 2467

    [40]

    Dai D, He S 2010 Opt. Express 18 17958

    [41]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8

    [42]

    Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J 2019 ACS Photonics 6 154

    [43]

    Ma Z, Kikunaga K, Wang H, Sun S, Amin R, Maiti R, Tahersima M H, Dalir H, Miscuglio M, Sorger V J 2020 ACS Photonics 7 932

    [44]

    Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenløwe L K 2020 Nanophotonics 9 317

    [45]

    Craciun A-M, Stoia D, Azziz A, Astilean S, Focsan M, Lamy de la Chapelle M 2025 RSC Adv. 15 20848

    [46]

    Alsawafta M 2025 Plasmonics 1 1

    [47]

    Abb M, Wang Y, Papasimakis N, de Groot C H, Muskens O L 2014 Nano Lett. 14 346

    [48]

    Nelayah J, Kociak M, Stéphan O, García de Abajo F J, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán L M, Colliex C 2007 Nat. Phys. 3 348

    [49]

    Li Y, DiStefano J G, Murthy A A, Cain J D, Hanson E D, Li Q, Castro F C, Chen X, Dravid V P 2017 ACS Nano 11 10321

    [50]

    Alamri M, Gong M, Cook B, Goul R, Wu J Z 2019 ACS Appl. Mater. Interfaces 11 33390

    [51]

    Khurgin J, Bykov A Y, Zayats A V 2024 eLight 4 15

    [52]

    Wang W, Besteiro L V, Yu P, Lin F, Govorov A O, Xu H, Wang Z 2021 Nanophotonics 10 1911

    [53]

    Lei D, Su D, Maier S A 2024 Light-Sci. Appl. 13 243

    [54]

    Xu X, Dutta A, Khurgin J, Wei A, Shalaev V M, Boltasseva A 2020 Laser Photon. Rev. 14 1900376

    [55]

    Yang W, Liu Y, Cullen D A, McBride J R, Lian T 2021 Nano Lett. 21 4036

    [56]

    Liu Z, Liu M, Qi L, Zhang N, Wang B, Sun X, Zhang R, Li D, Li S 2025 Light-Sci. Appl. 14 68

    [57]

    Yuan F Y, Ye Z, Fan Z, Lin B, Hui L, Jun P L, Zhen H N 2022 Chin. Phys. Lett. 39 058501

    [58]

    Chen S, Cao R, Chen X, Wu Q, Zeng Y, Gao S, Guo Z, Zhao J, Zhang M, Zhang H 2020 Adv. Mater. Interfaces 7 1902179

    [59]

    Yan J, Yang X, Liu X, Du C, Qin F, Yang M, Zheng Z, Li J 2023 Adv. Sci. (Weinh) 10 2207022

    [60]

    Randerson S A, Zotev P G, Hu X, Knight A J, Wang Y, Nagarkar S, Hensman D, Wang Y, Tartakovskii A I 2024 ACS Nano 18 16208

    [61]

    Fan C, Sun X, Shi Z, Lü B, Chen Y, Li S, Liu J M 2023 Adv. Opt. Mater. 11 2202860

    [62]

    Rizvi M H, Wang R, Schubert J, Crumpler W D, Rossner C, Oldenburg A L, Fery A, Tracy J B 2022 Adv. Mater. 34 2203366

    [63]

    Hao Y, Hang T, Chen C, Zhang C, Chen Y, Yu C, Wu S, Yang J, Yang Z, Li X, Cao G 2024 Adv. Funct. Mater. 35 2416475

    [64]

    Lu Z, Ji J, Ye H, Zhang H, Zhang S, Xu H 2024 Nat. Commun. 15 8803

    [65]

    Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861

    [66]

    Li H, Zhao J, Wang Y, Liu H, Chen Q, Bao Y, Zhou M, Li Y, Sang Y, Yang F, Nie Z 2025 ACS Nano 19 7391

    [67]

    Chen J B, Tang D X, Xie Y, Gu C J, Liu Z J, Lu P F, Shen X 2024 Laser Technol. 48 867(in Chinese)[程佳宝, 唐大秀, 谢颖, 顾辰杰, 刘自军, 芦鹏飞, 沈祥 2024 激光技术 48 867]

    [68]

    Chu Y T, Chen P L, Huang S H, Yadav S N S, Syong W R, Mao C H, Lu Y J, Liu C H, Wu P C, Yen T J 2025 ACS Nano 19 18545

    [69]

    Wen T, Zhang W, Liu S, Hu A, Zhao J, Ye Y, Chen Y, Qiu C W, Gong Q, Lu G 2020 Sci. Adv. 6 eaao0019

    [70]

    Ray S K, Chandel S, Singh A K, Kumar A, Mandal A, Misra S, Mitra P, Ghosh N 2017 ACS Nano 11 1641

    [71]

    Zhao B, Zhang Z M 2015 ACS Photonics 2 1611

    [72]

    Wang C, He C, Liu L, Tang Z, Wang Y, Wang H, Liu W, Wang X, Wang X, Pan A 2025 Nano Lett. 25 5794

    [73]

    Li R, Zhang X, Zhong F, Yu Y, Yan P, Lei D, Lu J, Ni Z 2025 Adv. Opt. Mater. 13 2402668

    [74]

    Huang T, Tu X, Shen C, Zheng B, Wang J, Wang H, Khaliji K, Park S H, Liu Z, Yang T, Zhang Z, Shao L, Li X, Low T, Shi Y, Wang X 2022 Nature 605 63

    [75]

    Zhu Y, Zou K L, Qi D X, He J, Peng R, Wang M 2025 Nano Lett. 25 8680

    [76]

    He C, Tang Z, Wang C, Wang Y, Hua Q, Liu L, Wang X, Schmidt O G, Maier S A, Ren H, Wang X, Pan A 2025 Adv. Mater. 37 2418405

    [77]

    Wei J, Xu C, Dong B, Qiu C-W, Lee C 2021 Nat. Photonics 15 614

    [78]

    Yang L, Yuan Y, Fu B, Yang J, Dai D, Shi S, Yan S, Zhu R, Han X, Li H, Zuo Z, Wang C, Huang Y, Jin K, Gong Q, Xu X 2023 Nat. Commun. 14 4265

    [79]

    Gan W, Liu Y, Liu X, Xiao R, Ni K, Jiang M, Han H, Zhou X, Li S, Wu C, Li Y, Li H 2024 ACS Appl. Mater. Interfaces 16 24943

    [80]

    Guo J, Lin L, Li S, Chen J, Wang S, Wu W, Cai J, Liu Y, Ye J, Huang W 2022 ACS Appl. Nano Mater. 5 587

    [81]

    Wu P Y, Lee W Q, Liu C H, Huang C B 2024 Nat. Commun. 15 1855

    [82]

    Hao Y, Hang T, Chen C, Zhang C, Chen Y, Yu C, Wu S, Yang J, Yang Z, Li X, Cao G 2025 Adv. Funct. Mater. 35 2416475

    [83]

    Guo T, Li S, Zhou Y N, Lu W D, Yan Y, Wu Y A 2024 Nat. Commun. 15 6731

    [84]

    Chen Y, Zheng X, Zhang X, Pan W, Wang Z, Li S, Dong S, Liu F, He Q, Zhou L, Sun S 2023 Nano Lett. 23 3326

    [85]

    Liu Y, Wang J, Zhu B, Wang X, Zhang S, Liu W, Shi L, Tao Z 2025 Nano Lett. 25 2864

    [86]

    Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490

    [87]

    Pelgrin V, Yoon H H, Cassan E, Sun Z 2023 Light-Adv. Manuf. 4 168

    [88]

    Hou S, Han L, Zhang S, Zhang L, Zhang K, Xiao K, Yang Y, Zhang Y, Wen Y, Mo W, Tan Y, Yao Y, He J, Tang W, Guo X, Zhu Y, Chen X 2025 Adv. Sci. (Weinh) 12 2415518

    [89]

    Brown E, Brunker J, Bohndiek S E 2019 Dis. Model. Mech. 12 039636

    [90]

    Jia Q L, Zhang Z D 2024 Int. J. Remote Sens. 45 5224

    [91]

    Che M, Wang B, Zhao X, Li Y, Chang C, Liu M, Du Y, Qi L, Zhang N, Zou Y, Li S 2024 ACS Nano 18 30884

    [92]

    Wu C H, Ku C J, Yu M W, Yang J H, Wu P Y, Huang C B, Lu T C, Huang J S, Ishii S, Chen K P 2023 Adv. Sci. 10 1

    [93]

    Zhang T, Guo X, Wang P, Fan X, Wang Z, Tong Y, Wang D, Tong L, Li L 2024 Nat. Commun. 15 2471

    [94]

    Bai Q, Huang X, Du S, Guo Y, Li C, Li W, Li J, Gu C 2024 Nanoscale 16 8907

    [95]

    Jiang H, Chen Y, Guo W, Zhang Y, Zhou R, Gu M, Zhong F, Ni Z, Lu J, Qiu C W, Gao W 2024 Nat. Commun. 15 8347

    [96]

    Deng J, Shi M, Liu X, Zhou J, Qin X, Wang R, Zhen Y, Dai X, Chen Y, Wei J, Ni Z, Gao W, Qiu C W, Chen X 2024 Nat. Electron. 7 1004

    [97]

    Maier S A (Maier S A ed) 2007 Plasmonics:Fundamentals and Applications (New York, NY:Springer US) pp21-37

    [98]

    Gogotsi Y, Anasori B 2019 ACS Nano 13 8491

    [99]

    Song Q, Odeh M, Zúñiga-Pérez J, Kanté B, Genevet P 2021 Science 373 1133

    [100]

    Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411

    [101]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821

    [102]

    Gan W, Ming L, Zhang C, Peng G, Cao Z, Chen Z, Li Y, Wu C, Liu X, Song L 2025 ACS Appl. Mater. Interfaces 17 34086

    [103]

    Li H, Xiang Z, Wang T, Naik M H, Kim W, Nie J, Li S, Ge Z, He Z, Ou Y, Banerjee R, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Zaletel M P, Crommie M F, Wang F 2024 Nature 631 765

    [104]

    Wan H, Yu S, Lei Y, Zhao Q, Tao G, Luan S, Gui C, Zhou S 2021 Appl. Opt. 60 2783

    [105]

    Yu D, Cao F, Liao J, Wang B, Su C, Xing G 2022 Nat. Commun. 13 6229

    [106]

    Wang Z, Wan T, Ma S, Chai Y 2024 Nat. Nanotechnol. 19 919

    [107]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [108]

    Yan Y, Yan T, Wang F, Zhu Y, Li S, Cai Y, Zhang F, Wang Y, Liu X, Xu K, He J, Zhan X, Lin J, Wang Z 2025 Nano Lett. 25 6125

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, doi: 10.7498/aps.73.20241106
    [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, doi: 10.7498/aps.73.20240668
    [3] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, doi: 10.7498/aps.73.20240489
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, doi: 10.7498/aps.70.20210693
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [6] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元. 物理学报, doi: 10.7498/aps.68.20191085
    [7] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, doi: 10.7498/aps.68.20190331
    [8] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [9] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, doi: 10.7498/aps.68.20191098
    [10] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, doi: 10.7498/aps.66.247701
    [11] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, doi: 10.7498/aps.66.227301
    [12] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, doi: 10.7498/aps.65.087301
    [13] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, doi: 10.7498/aps.65.236801
    [14] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.63.203201
    [15] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, doi: 10.7498/aps.63.127303
    [16] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, doi: 10.7498/aps.62.237303
    [17] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, doi: 10.7498/aps.62.177301
    [18] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, doi: 10.7498/aps.62.037805
    [19] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, doi: 10.7498/aps.61.097805
    [20] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, doi: 10.7498/aps.60.046102
计量
  • 文章访问数:  41
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回