搜索

x
中国物理学会期刊

微结构诱导电场畸变下混合放电的特性与增强机理

CSTR: 32037.14.aps.74.20251303

Characteristics and enhancement mechanism of hybrid discharge under microstructure-induced electric field distortion

CSTR: 32037.14.aps.74.20251303
PDF
HTML
导出引用
  • 本文基于二维流体模型, 以平行板结构为基础, 对高压电极介质表面具有微结构的大气压氧气脉冲放电进行了研究, 重点分析了微结构诱导的混合放电及其增强机制. 微结构的存在导致放电过程中电场畸变, 电子在横向电场的作用下被局域束缚在微结构下方区域, 放电呈现出电晕模式; 同时由于凸起微结构的存在, 该处放电间隙减小, 纵向电场显著增强, 从而引起微结构下方电晕放电与两侧平板放电产生放电时间上的不一致性. 随着表面凸起微结构几何参数的增大, 可进一步诱发二次放电. 仿真结果表明, 电晕放电的存在有效提高了电子密度、电子温度及高能电子的数量占比, 增强了放电; 高凸起条件电晕放电受到抑制的情况下, 二次放电的产生, 有效提高了高能电子的数量占比及空间内活性氧原子的平均数密度. 这些发现为微结构引发的放电增强微观机制提供了深刻见解, 为设计高效的等离子体装置提供理论基础.

     

    In order to investigate the enhancement mechanism of atmospheric-pressure oxygen pulsed discharge in a parallel-plate dielectric barrier discharge (DBD) with microstructures fabricated on the dielectric surface of the high-voltage electrode, this work systematically analyzes the electron transport processes, the formation and evolution of electric fields, and the spatial distribution of particles by using a two-dimensional fluid model. The introduction of microstructures can cause significant electric field distortion, generating a strong transverse electric field that locally confines and focuses electrons beneath the micro-structured region, leading to the formation of a stable corona-mode discharge. At the same time, the reduced local discharge gap near the microstructure enhances the longitudinal electric field, resulting in a temporal asynchrony between the corona discharge under the microstructure and the parallel-plate discharge in the adjacent flat regions. As the geometric dimensions of the microstructures increase, a secondary discharge is triggered, further modulating the overall discharge behavior. Under conditions where the corona discharge is suppressed by higher protrusions, the occurrence of secondary discharge effectively increases the proportion of high-energy electrons and the spatially averaged density of reactive oxygen atoms. Simulation results reveal that the corona discharge and the secondary discharge significantly raise electron density, electron temperature, and the proportion of high-energy electrons, thereby intensifying the discharge activity. These findings offer deep insight into the micro-mechanisms of microstructure-induced discharge enhancement and provide valuable guidance for designing highly efficient plasma devices with tailored geometric features.

     

    目录

    /

    返回文章
    返回