-
偶极磁场约束等离子体特性及其与带电粒子束的相互作用研究是近地空间磁层等离子体研究领域关心的一类重要问题。本研究采用PIC(Particle In Cell)方法,通过开源的Smilei程序,研究了电子束注入偶极磁场约束等离子体的三维动力学演化行为。论文模拟了不同注入角度电子束对等离子体的影响,给出了电子束及等离子体的时空演化过程和行为解释。研究结果显示,偶极磁场中的等离子体沿磁场线形成“新月形”壳结构分布,壳中形成内外相反方向的环形电流。当电子束的注入角度与磁场方向的夹角过大(超过20°),且漂移速度未对准偶极场中心时。大多数电子束粒子将在偶极磁场中漂移,散射并弹出模拟区域,无法与偶极磁场约束的等离子体发生相互作用。未来我国的偶极磁场约束等离子体研究装置在开展电子束与等离子体相互作用的实验时,有必要选择适当的电子束入射方向,以确保电子束能够进入偶极磁场的核心区域并与原来约束的等离子体进行相互作用。同时模拟结果显示电子束注入会使得等离子体环形电流在环向上变得不均匀。本研究有助于深入了解偶极磁场中的等离子体动力学行为特性,对于保障我国空间等离子体研究装置完成预期科学目标具有实际价值。Studies on the characteristics of dipole magnetic field-confined plasmas and their interaction with charged particle beams are critical to the near-Earth magnetospheric plasma research. In this paper, a fully relativistic electromagnetic Particle-in-Cell (PIC) method, implemented with the open-source code Smilei, is used to perform three-dimensional kinetic simulations on the evolution of electron beams injected into the dipole magnetic field confined plasmas. The simulation adopts a uniform grid with 256 cells in each spatial direction, neglects collisional effects, and considers a plasma consisting only of electrons and ions. The initial plasma is configured as a rectangular toroidal structure with a square cross-section, a number density of 1×1012 m-3. An externally prescribed dipole magnetic field is applied in the simulation domain, generated by an ideal current loop centered in the x-y plane of the grid (the loop radius is 1/8 of the grid length, and the current magnitude is 4000 A), with a maximum magnetic field strength of 6000 G. Under these conditions, the ratio of electron plasma frequency to gyrofrequency ranges from 5.3×10-4 to 3.2, and the plasma beta varies from 2.24×10-10 to 8×10-3. The grid cell size is set to 0.05 times of the electron Debye length, and the time step is 0.95 times of the CFL time step. The simulation is run for a total of 20000 steps to ensure the achievement of a quasi-steady state. The electron beams with a temperature of 10 eV and a drift velocity of 1×107 m/s are injected from the x-min boundary of the grid with different angles (0°, 30°, 60°) relative to the positive x-axis, to explore the impact of electron beams with varying injection angles on the dipole magnetic field confined plasma.
The simulation results illustrate the spatiotemporal evolution and behavior of the electron beam and plasma. Specifically, the plasma confined by a dipole magnetic field forms a crescent-shaped shell structure aligned with magnetic field lines, with toroidal currents of opposite directions generated inside and outside the shell. When the electron beam is injected at incident angles of 0° and 30°, drift effects cause most beam particles to concentrate along a specific magnetic field line on the x=y plane. Additionally, the drift current induced by electron beam injection alters the distribution of the central toroidal current in the main plasma, resulting in localized enhancement and attenuation of the toroidal current. In contrast, at an injection angle of 60°, the overwhelming majority of beam particles are scattered by the dipole magnetic field and fail to reach the central region for interaction with the main plasma. Simulation findings further indicate that when the electron beam’s injection angle relative to the magnetic field direction exceeds 20° and its drift velocity is misaligned with the dipole field center, most beam particles scatter and are ejected from the simulation domain, precluding interaction with the dipole-confined plasma. For future experimental devices investigating the interactions between electron beam and plasma in dipole magnetic field confinement systems, selecting an appropriate beam injection direction is critical to ensure the electrons can access the core region of the dipole field and interact with the confined plasma. This study yields valuable insights into the dynamic behavior of plasma in dipole magnetic fields, and is helpful for enabling China’s space plasma research facilities to achieve their designed scientific goals.-
Keywords:
- Plasma /
- Electron beam /
- Dipole magnetic field /
- PIC
-
[1] Levitt B, Maslovsky D, Mauel M E 2005 Phys. Rev. Lett. 94 175002
[2] Baitha A R, Kumar A, Bhattacharjee S 2018 Rev. Sci. Instrum. 89 23503
[3] Saitoh H, Yoshida Z, Morikawa J, Yano Y, Hayashi H, Mizushima T, Kawai Y, Kobayashi M, Mikami H 2010 Phys. Plasmas 17 112111
[4] Wang Z J, Ma X, Xiang Z, Gu X D, Jiao L H, Lei L J, Ni B B. 2022 Acta Phys. Sin. 71 229401(in Chinese)[王敬之,马新,项正,顾旭东,焦鹿怀,雷良建,倪彬 彬. 2022物理学报71 229401]
[5] Zhu Q, Ma X, Cao X, Ni B B, Xiang Z, Fu S, Gu X D, Zhang Y N 2022 Acta Phys. Sin. 71 051101(in Chinese)[朱琪,马新,曹兴,倪彬彬,项正,付松,顾旭东, 张援农2022物理学报71 051101]
[6] Chang S S, Ni B B, Zhao Z Y, Wang F, Li J X, Zhao J J, Gu X D, Zhou C 2014 Acta Phys. Sin. 63 069401(in Chinese)[常珊珊,倪彬彬,赵正予,汪枫,李金星, 赵晶晶,顾旭东,周晨2014物理学报63 069401]
[7] Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937(in Chinese)[倪 彬彬,赵正予,顾旭东,汪枫2008物理学报57 7937]
[8] Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673(in Chinese)[顾旭东,赵正予,倪彬彬,王翔,邓峰2008物理学报57 6673]
[9] Korotova G I, Sibeck D G, Tahakashi K, Dai L, Spence H E, Kletzing C A, Wygant J R, Manweiler J W, Moya P S, Hwang K J, Redmon R J 2015 Ann. Geophys. 33 955
[10] Zong Q G, Hao Y Q, Wang Y F 2009 Sci. China Ser. E-Technol. Sci. 52 3698
[11] Zong Q G, Wang Y F, Yang B, Fu S Y, Pu Z Y, Xie L, Fritz T A 2008 Sci. China Ser. E-Technol. Sci. 51 1620
[12] Van Compernolle B, An X, Bortnik J, Thorne R M, Pribyl P, Gekelman W 2015 Phys. Rev. Lett. 114 245002
[13] Chen J, Powis A T, Kaganovich I D, Wang Z B, Yu Y 2025 Phys. Rev. Lett. 135 45301
[14] Nishio K, Mori K 2025 AIAA SCITECH Forum 2025-2658
[15] Huang H, Wang Z B, Wang X G, Tao X 2018 Chin. Phys. B 27 015201
[16] Huang H, Wang Z B, Wang X G, Tao X. 2019 Phys. Plasmas 26 022106
[17] Xiao Q M, Wang Z B, Wang X G, Xiao C J, Yang X Y, Zheng J X 2017 Plasma Sci. Technol. 19 35301
[18] Liu T, Zhang G S, Du J J, Yang Q X, Huang S L, Liu Y H 2022 Nucl. Fusion Plasma Phys. 42 271(in Chinese)[刘腾,张国书,杜俊杰,杨庆喜,黄淑龙,刘 云辉2022核聚变与等离子体物理42 271]
[19] Sun X, Liu M, Xie J L, Yu Y, Lin M N, Zhang Q 2014 J. Univ. Sci. Technol. China 44 374(in Chinese)[孙玄,刘明,谢锦林,余羿,林木楠,张情2014中 国科学技术大学学报44 374]
[20] Xiao C, Chen Y, Yang X, Xu T, Wang L, Xu M, Guo D, Yu Y, Lin C 2016 Rev. Sci. Instrum. 87 11D610
[21] Sun C, Sang C, Ye H, Wang Q, Liu H, Wang Z, Wang H, Ke R, Wang Y, Zhang Y, Wang D 2021 Fusion Eng. Des. 162 112074
[22] Wang Z B, Shen Y, Yu Y, Chen J 2024 Southern Energy Construction 11 1(in Chinese)[王志斌,沈炀,余羿,陈坚. 2024南方能源建设11 1]
[23] Zhukovsky A, Michael P C, Schultz J H, Smith B A, Minervini J V, Kesner J, Radovinsky A, Garnier D, Mauel M 2005 Fusion Eng. Des. 75-79 29
[24] Saitoh H, Yoshida Z, Morikawa J, Furukawa M, Yano Y, Kawai Y, Kobayashi M, Vogel G, Mikami H 2011 Phys. Plasmas 18 056102
[25] Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267
[26] Yoshida Z, Ogawa Y, Morikawa J, Watanabe S, Yano Y, Mizumaki S, Tosaka T, Ohtani Y, Hayakawa A, Shibui M 2006 Plasma Fusion Res. 1 8
[27] von der Linden J, Nissl S, Deller A, Singer M, Belmore N, Hugenschmidt C P, Pedersen T S, Saitoh H, Stenson E V 2024 Eur. Phys. J. D 78 146
[28] Deller A, von der Linden J, Ni Ss L S, Michishio K, Oshima N, Higaki H, Stenson E V 2024 Phys. Rev. E 110 L23201
[29] Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, Dargent J, Riconda C, Grech M 2018 Comput. Phys. Commun. 222 351
[30] Sun J, Gao X, Chen L, Lu Q, Tao X, Wang S 2016 Phys. Plasmas 23 22901
[31] Ortner M, Bandeira L G C 2020 SoftwareX 11 100466
计量
- 文章访问数: 8
- PDF下载量: 0
- 被引次数: 0








下载: