搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温非平衡等离子体在高效电解水催化材料制备与改性的应用

李永建 李国玲 刘啸 郑捷

引用本文:
Citation:

低温非平衡等离子体在高效电解水催化材料制备与改性的应用

李永建, 李国玲, 刘啸, 郑捷

Applications of low-temperature non-equilibrium plasmas in preparation and modification of high-efficiency water electrolysis catalysts

LI Yongjian, LI Guoling, LIU Xiao, ZHENG Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 氢能是最具发展前景的清洁可再生能源之一, 绿色制氢技术备受关注. 电解水制氢因反应过程环保、产物纯度高且操作简便, 被视为实现规模化绿氢生产的重要途径. 然而, 电解水催化剂普遍存在成本高昂、合成工艺复杂等问题, 严重制约了该技术在新能源领域的产业化应用. 低温等离子体技术凭借其低温高效、高反应活性及独特的电磁场效应, 在功能材料表面改性领域展现出显著优势. 本文系统综述了低温等离子体技术在电解水催化材料制备与改性中的应用, 重点探讨等离子体改性的作用机制, 对电催化反应效率的提升效果. 首先阐述了典型非平衡低温等离子体的物理特性与作用原理; 继而分类评述了近年来该技术在催化材料改性中的研究进展, 包括表面微结构调控、表面物性调控及界面优化等策略; 最后, 基于当前改性机理与应用研究的局限性, 对低温等离子体技术在催化剂设计中的未来发展方向提出了展望.
    Hydrogen energy, as one of the most promising clean and renewable energy sources, has received much attention due to its green production technology. Electrolytic water splitting is regarded as a critical pathway for large-scale green hydrogen production due to its environmentally friendly reaction process, high product purity, and operational simplicity, However, electrocatalysts for water electrolysis commonly face challenges such as high costs and complex synthesis processes, thereby severely hindering the industrial application. Low-temperature plasma (LTP) technology, with its advantages of mild processing conditions, high reactivity, and unique electromagnetic field effects, has demonstrated remarkable potential in the surface modification of materials. This review systematically summarizes the applications of LTP in the preparation and modification of electrocatalytic materials for water splitting, focusing on the mechanism of plasma-induced enhancement in electrocatalytic efficiency. First, the physical characteristics and fundamental principle of typical non-equilibrium low-temperature plasma are elucidated. Subsequently, recent advances in plasma-assisted modification strategies for catalytic materials are categorized and critically discussed, including surface microstructure modulation, surface property regulation and interface optimization. Finally, based on the current limitations in mechanistic understanding and practical applications, future research directions for LTP technology in catalyst design are proposed.
  • 图 1  低压非平衡等离子体 (a) 直流辉光放电[13]; (b) 电容耦合射频等离子体[14]; (c) 介质阻挡放电等离子体[15]

    Fig. 1.  Low-pressure non-equilibrium plasmas: (a) Glow discharge [13]; (b) capacitively coupled radio-frequency plasma[14]; (c) dielectric barrier discharge plasma[15].

    图 2  (a) 双朗缪尔探针的I-V曲线[32]; (b) 朗缪尔探针与非侵入式阻抗等离子体密度测量结果对比图[33]; (c) P-Ar-H2等离子体和Ar-CH4等离子体的光学发光光谱[34]; (d) 氧气气氛的光学发光光谱[35]; (e) 不同压力下介质阻挡放电等离子体放电图像[36]; (f) 不同压力下氮气的发射强度[36]

    Fig. 2.  (a) I-V curve of double Langmuir probe[32]; (b) comparison of Langmuir probe non-invasive impedance plasma density[33]; (c) in suit optical emission spectra of plasma of P-Ar-H2 and Ar-CH4[34]; (d) optical emission spectroscopy of O2 atmosphere[35]; (e) discharge images of DBD at different pressures[36]; (f) emission intensities of N2 at different pressures[36].

    图 3  (a), (b) L-Co纳米结构形成示意图和扫描电子显微镜图像[37]; (c) Co2P-Ni2P/CC扫描电子显微镜图像[38]; (d) 富氧NiFe-LDH的透射电子显微镜图像[39]; (e) 富氧NiFe-LDH纳米片的比表面积和孔径分布[39]; (f) P-Ni MOF/POM制备流程图[40]; (g) Ni MOF/POM扫描电子显微镜图像[40]; (h) 多孔P-Ni MOF/POM扫描电子显微镜图像[40]; (i) Ni3N/NF的扫描电子显微图像[41]; (j) N2-H2等离子体下Ni3N/NF合成示意图[41]

    Fig. 3.  (a), (b) Schematic illustration for the formation and SEM images of L-Co NSs[37]; (c) SEM images of Co2P-Ni2P/CC[38]; (d) TEM images of oxygen-enriched NiFe-LDH[39]; (e) BET and pore diameter distribution of oxygen-enriched NiFe-LDH nanosheets[39]; (f) schematic illustration of the fabrication process of porous P-Ni MOF/ POM[40]; (g) SEM image of Ni MOF/POM[40]; (h) SEM images of P-Ni MOF/ POM[40]; (i) SEM image of Ni3N/NF[41]; (j) schematic illustration of the synthesis of Ni3N/NF under N2-H2 plasma[41].

    图 4  (a)—(c) NiFeP/NF合成示意图、NiFe/NF和NiFeP/NF的扫描电子显微镜图像[44]; (d) CoPO合成示意图[45]; (e), (f) ZIF-67和CoPO的扫描电子显微镜图像[45]; (g), (h) 磷化前后的T-NiMoP电子显微镜图像[46]; (i) Co2N的扫描电子显微镜图像[47]

    Fig. 4.  (a)–(c) Synthesis process of NiFeP/NF and SEM images of NiFeMOF/NF and NiFeP/NF[44]; (d) synthesis process of CoPO[45]; (e), (f) SEM image of ZIF-67 and CoPO[45]; (g), (h) SEM image of P-NiMoP and T-NiMoP[46]; (i) SEM image of Co2N[47].

    图 5  (a), (b) NiCo-LDHs和NiCo-LDHs/Ar的扫描电子显微镜图像[50]; (c), (d) 等离子体处理前后的氢氧化镍纳米片的扫描电子显微镜图像[51]; (e) 等离子体处理前后MoS2的透射电子显微镜图像[48]; (f), (g) 等离子体剥离前后的MXene材料的扫描电子显微镜图像[52]; (h), (i) MXene和MXene-DBD的扫描电子显微镜图像[53]

    Fig. 5.  (a), (b) SEM images of NiCo-LDHs and NiCo-LDHs/Ar[50]; (c), (d) SEM images of m-Ni(OH)2NASs and β-Ni(OH)2/Ni NSAs[51]; (e) TEM images of MoS2 after plasma treatment[48]; (f), (g) SEM images of MXene@GO and MXene@rGO[52]; (h), (i) SEM images of MXene and MXene-DBD[53].

    图 6  (a)—(c) 纳米颗粒晶格间距的高分辨透射电子显微镜、O 1s轨道的X射线光电子能谱、纳米颗粒的带隙测定[58]; (d)—(f) N2等离子体处理不同时间的电子顺磁共振光谱、O 1s轨道的X射线光电子能谱、N2等离子体处理后的NiMoO4的高分辨率透射电镜图像[59]; (g) 不同条件等离子体处理的傅里叶转换光谱; (h) PBA-raw和PBA-3h-A的电子自旋共振光谱; (i) 等离子体处理后的PBA的水接触角[60]

    Fig. 6.  (a)–(c) HRTEM image showing lattice spacing of the nanoparticle, XPS spectra of the O 1s, bandgap determination of the nanoparticles[58]; (d)–(f) EPR spectra by N2 plasma for different periods, XPS spectra of the O 1s and HRTEM image of NiMoO4 under N2 plasma treated[59]; (g) Fourier transform infrared spectra of plasma treated under different conditions; (h) solid electron spin resonance spectra of PBA-raw and PBA-3h-A; (i) water contact angle (WCA) of plasma treated PBA[60].

    图 7  (a), (b) Ar/NH3等离子体处理前后的拉曼光谱和热重曲线[63]; (c), (d) 氧化钴异质结经氧等离子体处理前后的拉曼光谱和N2吸附-脱附等温曲线[64]; (e), (f) 氮掺杂纳米管经Ar等离子体处理前后的拉曼光谱和C 1s轨道的X射线光电子能谱[65]

    Fig. 7.  (a), (b) Raman spectra and Thermogravimetry (TGA) curves before and after Plasma treatment[63]; (c), (d) Raman spectra and N2 adsorption-desorptionisotherms of cobalt oxide heterojunctions before and after oxygen plasma treatment[64]; (e), (f) Raman spectra and XPS spectra of the C 1s of nitrogen-doped nanotubes before and after Ar plasma treatment[65].

    图 8  (a) NiFeP/NF, NiFe MOF/NF和NiFe LDH/NF的X射线衍射[44]; (b) NiFeP/NF的高分辨率透射电镜图像[44]; (c) CoNiP@C/NF的X射线衍射[68]; (d) CoNiP@C和CoNiP的P 2p轨道的X射线光电子能谱[68]; (e)—(g) N2-H2和纯N2的光发射光谱、不同等离子体处理后氢氧化镍的X射线衍射、N2-H2等离子体处理后Ni 2p的XPS光谱[69]; (h), (i) N2-H2等离子体处理NiV LDH的X射线衍射和Ni 1s轨道的X射线光电子能谱[70]

    Fig. 8.  (a) X-ray diffraction (XRD) of NiFeP/NF, NiFeMOF/NF, and NiFeLDH/NF[44]; (b) HR-TEM images of NiFeP/NF[44]; (c) XRD patterns of CoNiP@C/NF[49]; (d) XPS spectra of P 2p of CoNiP@C and CoNiP[68]; (e)–(g) optical emission spectra of N2-H2 and N2, XRD of Ni(OH)2 after different plasma treatment and XPS spectra of Ni 2p after N2-H2 plasma treatments[69]; (h), (i) XRD pattern and Ni 1s XPS spectra of the NiV LDH after N2-H2 plasma treatment[70].

    图 9  (a) Co2P和Ni2P的高分辨率透射电子显微图像[71]; (b) 基于Co2P-Ni2P/CC中生物电化学体统(BEF)的电子转移示意图[71]; (c) 等离子体进行磷氮掺杂的NiCo泡沫高分辨率透射电子显微镜图像[72]; (d) CoO/Co的高分辨率透射电子显微镜图像[73]; (e) v-CoO/Co(111), Co(111)和v-CoO的态密度和d带中心[74]; (f) IrO2/CoCH异质结构透射电子显微镜图像[75]; (g) CoCH, IrO2和IrO2/CoCH的电子态密度[75]; (h) Ni12P5/ZnP2异质结构的透射电子显微镜图像[75]; (i) N2吸附-脱附等温线(孔径分布曲线)[75]

    Fig. 9.  (a) High-resolution transmission electron microscopy images of Co2P and Ni2P[71]; (b) schematic diagram of electron transfer based on BEF in Co2P-Ni2P/CC[71]; (c) high-resolution transmission electron microscopy images of plasma phosphorus-nitrogen doped NiCo foam[72]; (d) the HRTEM of CoO/Co [73]; (e) DOS and d-band centers of -CoO/Co(111), Co(111), v-CoO[73]; (f) the HRTEM images of heterostructure of IrO2/CoCH[74]; (g) the DOS of CoCH, IrO2 and IrO2/CoCH[75]; (h) the TEM images of the heterostructure of Ni12P5/ZnP2[75]; (i) N2 adsorption–desorption isotherms(BJH) [75].

    表 1  不同低温非平衡等离子体的典型参数

    Table 1.  Typical plasma parameters in different low temperature non-equilibrium plasma.

    物理量直流辉光放电射频辉光放电DBD
    Te(典型)/eV0.5—5[23]1.0—3.0[24]1—5[25]
    ne(典型)/cm–31015—1017[23]1018—1019[24]1016—1020[26]
    IED低压鞘层加速可达几十eV [27]基底偏压或射频偏置调控几十eV[31]表面离子能较低, 瞬态流含高能电子[26]
    自由基较为丰富[28]较为丰富[29]非常丰富但寿命短[30]
    典型改性刻蚀、诱导缺陷掺杂、诱导相变表面改性
    下载: 导出CSV
  • [1]

    陈晶亮, 熊源泉 2013 物理化学学报 29 205Google Scholar

    Tao J L, Xiong Y Q 2013 Acta Phy. Chim. Sin. 29 205Google Scholar

    [2]

    Ma Y B, Wang J, Yu J L, Zhou J W, Zhou X C, Li H X, He Z, Long H W, Wang Y H, Lu P Y, Yin J W, Sun H Y, Zhang Z C, Fan Z X 2021 Matter 4 888Google Scholar

    [3]

    Long S, Zhu J, Jing Y W, He S, Cheng L J, Shi Z 2023 Coatings 13 1917Google Scholar

    [4]

    Qiu C J, Jiang L L, Gao Y G, Sheng L Z 2023 Mater. Design 230 111952Google Scholar

    [5]

    Rosa V, Cameli F, Stefanidis G D, Van Geem K M 2024 Acc. Mater. Res. 5 1024Google Scholar

    [6]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [7]

    Yu F, Liu M C, Ma C H, Di L B, Dai B, Zhang L L 2019 Nanomaterials 9 1436Google Scholar

    [8]

    Tang J, Su C, Shao Z 2022 Energy Tech. 10 2200235Google Scholar

    [9]

    Luo Y, Wu Y H, Huang C, Menon C, Feng S P, Chu P K 2022 EcoMat 4 e12197Google Scholar

    [10]

    Ochkin V N 2009 Spectroscopy of Low Temperature Plasma (1st ed. ) (Wiley

    [11]

    Laroussi M, Akan T 2007 Plasma Process. Polym. 4 777Google Scholar

    [12]

    Taccogna F, Dilecce G 2016 Eur. Phys. J. D 70 251Google Scholar

    [13]

    Arumugam S, Alex P, Sinha S K 2017 Physics of Plasmas 24 112106Google Scholar

    [14]

    Zhu X M, Chen W C, Zhang S, Guo Z G, Hu D W, Pu Y K 2007 J. Phys. D: Appl. Phys. 40 7019Google Scholar

    [15]

    李和平, 聂秋月, 张晓菲, 包成玉 2014 中国科学: 物理学 力学 天文学 44 1157Google Scholar

    Li H P, Nie Q Y, Zhang X F, Bao C Y 2014 Sci. Sin. -Phys. Mech. Astron. 44 1157Google Scholar

    [16]

    董丽芳, 杨玉杰, 范伟丽, 岳晗, 肖红 2010 物理学报 59 1917Google Scholar

    Dong L F, Yang Y J, Fan W L, Yu H, Wang S, Xiao H 2010 Acta Phys. Sin. 59 1917Google Scholar

    [17]

    张晓星, 王宇非, 崔兆仑, 田远, 王浩 2021 电工技术学报 36 175

    Zhang X X, Wang Y F, Cui H L, Tian Y, Wang H 2021 Trans. China Electrotech. Soc. 36 175

    [18]

    Tran T N, Oanthavinsak B, Kado S, Matsuura H 2020 Plasma Sci. Technol. 22 115401Google Scholar

    [19]

    Kawamura E, Vahedi V, Lieberman M A, Birdsall C K 1999 Plasma Sources Sci. Technol. 8 R45Google Scholar

    [20]

    Hori M 2022 Rev. Mod. Plasma Phys. 6 36Google Scholar

    [21]

    Neyts E C 2016 Plasma Chem. Plasma Process 36 185Google Scholar

    [22]

    Fridman A 2008 Plasma Chemistry (Online-Ausg) (Cambridge: Cambridge University Press

    [23]

    Galaly A R, Dawood N 2024 Heliyon 10 e24490Google Scholar

    [24]

    Seong I, Kim S, Lee Y, Cho C, Jeong W, You Y, Choi M, Choi B, You S 2023 Materials 16 3219Google Scholar

    [25]

    Li J, Ma C H, Zhu S J, Yu F, Dai B, Yang D Z 2019 Nanomaterials 9 1428Google Scholar

    [26]

    Lim J S, Kim R H, Hong Y J, Lamichhane P, Adhikari B C, Choi J, Choi E H 2020 Res. Phys. 19 103569

    [27]

    Peter S, Pintaske R, Hecht G, Richter F 1993 J. Nucl. Mater. 200 412Google Scholar

    [28]

    Jiménez-Redondo M, Carrasco E, Herrero V J, Tanarro I 2015 Plasma Sources Sci. Technol. 24 015029Google Scholar

    [29]

    Park H, Choe W 2010 Current Appl. Phys. 10 1456Google Scholar

    [30]

    Wang C, Srivastava N 2010 Eur. Phys. J. D 60 465Google Scholar

    [31]

    Wei G, Li D Y, Zhao J R 2025 J. Vac. Sci. Technol. A 43 043001

    [32]

    Ghimire B, Khanal R, Subedi D P 2014 Kathmandu Univ. J Sci. Eng. Technol. 10 20Google Scholar

    [33]

    Gillman E D, Tejero E, Blackwell D, Amatucci W E 2018 Rev. Sci. Instrum. 89 113505Google Scholar

    [34]

    Li G C, Li Y L, Dong J, Sun B X, Liu Z L, Zheng J, Li G L 2025 Adv. Funct. Mater. e15680

    [35]

    Wang W B, Cao H J, Li G L 2023 Inorg. Chem. 62 10241Google Scholar

    [36]

    Xu S Y, Kang L, Cai J S, Tang S J 2018 AIP Adv. 8 115033Google Scholar

    [37]

    Sun W P, Xu Y, Yang L, Wen W D, Zhang H B, Yu X Y 2025 Small 21 2411215Google Scholar

    [38]

    Zhang J S, Zhang X L, Shi C, Yu X Y, Zhou Y T, Di L B 2024 Small 20 2406767Google Scholar

    [39]

    Chen H L, Zhao Q D, Gao L G, Ran J W, Hou Y 2019 ACS Sustainable Chem. Eng. 7 4247Google Scholar

    [40]

    Qi Q, Shao D, Zhou Y T, Wang Q, Yu X Y 2023 J. Mater. Chem. A 11 15663Google Scholar

    [41]

    Li G L, Wu X Q, Guo H, Guo Y R, Chen H, Wu Y, Zheng J, Li X G 2020 ACS Appl. Mater. Interfaces 12 5951Google Scholar

    [42]

    Ai R Q, Boukouvala C, Lewis G, Wang H, Zhang H, Lai Y H, Huang H, Ringe E, Shao L, Wang J F 2021 ACS Nano 15 9860Google Scholar

    [43]

    Meng L X, Zhou X L, Wang S Y, Zhou Y, Tian W, Kidkhunthod P, Tunmee S, Tang Y, Long R, Xin Y, Li L 2019 Angew. Chem. Int. Ed. 58 16668Google Scholar

    [44]

    Li G C, Niu M, An R Z, Zhang H Y, Sun B X, Li G L 2024 Inorg. Chem. 63 20792Google Scholar

    [45]

    Chen W X, Wei W, Wang K F, Zhang N, Chen G L, Hu Y J, Ostrikov K 2021 Nanoscale 13 6201Google Scholar

    [46]

    Zhang B A, Jiang Z Q, Shang X N, Li S S, Jiang Z J 2021 J. Mater. Chem. A 9 25934Google Scholar

    [47]

    Zheng J G, Xu A N, Wu A J, Li X D 2021 ACS Appl. Mater. Interfaces 13 21231Google Scholar

    [48]

    Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H 2013 ACS Nano 7 4202Google Scholar

    [49]

    Pham P V, Mai T H, Do H B, Vasundhara M, Nguyen V H, Nguyen T, Bui H V, Dao V D, Gupta R K, Ponnusamy V K, Park J H 2024 Chem. Soc. Rev. 53 5190Google Scholar

    [50]

    Liu Y Q, Zhang M, Hu D, Li R Q, Hu K, Yan K 2019 ACS Appl. Energy Mater. 2 1162Google Scholar

    [51]

    Yan P, Yang T, Lin M X, Guo Y N, Qi Z P, Luo Q Q, Yu X Y 2023 Adv. Funct. Mater. 33 2301343Google Scholar

    [52]

    Wang K L, Zheng B C, Mackinder M, Baule N, Qiao H, Jin H, Schuelke T, Fan Q H 2019 Energy Storage Mater. 20 299Google Scholar

    [53]

    Zhang H Y, Ding H R, Wang W B, Zhao J M, Sun B X, Xia Y J, Li G L, Chang X H 2024 Mater. Today Energy 44 101623Google Scholar

    [54]

    Yan D F, Chen R, Xiao Z H, Wang S Y 2019 Electrochim. Acta 303 316Google Scholar

    [55]

    Dou S, Tao L, Wang R L, El Hankari S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850Google Scholar

    [56]

    Liang H F, Ming F W, Alshareef H N 2018 Adv. Energy Mater. 8 1801804Google Scholar

    [57]

    Zhu C Q, Li C L, Zheng M J, Delaunay J J 2015 ACS Appl. Mater. Interfaces 7 22355Google Scholar

    [58]

    Boruah P J, Khanikar R R, Bailung H 2020 Plasma Chem. Plasma Process. 40 1019Google Scholar

    [59]

    Liu X S, Liu P, Wang F F, Lv X B, Yang T, Tian W, Wang C H, Tan S, Ji J Y 2021 ACS Appl. Mater. Interfaces 13 41545Google Scholar

    [60]

    Wang W B, Cao H J, Li G L 2023 Inorg. Chem. 62 10241Google Scholar

    [61]

    Yang T T, Zhang Z, Tan F, Liu H Y, Li X Y, Wang H Q, Yang Q 2024 Materials 18 121Google Scholar

    [62]

    Nunomura S 2023 J. Phys. D: Appl. Phys. 56 363002Google Scholar

    [63]

    Feng Y E, Chen W H, Zhao L, Jiang Z J, Tian X N, Jiang Z Q 2024 Small Methods 8 2400565Google Scholar

    [64]

    Ye L J, Chen W H, Jiang Z J, Jiang Z Q 2024 Carbon Energy 6 e457Google Scholar

    [65]

    Hu T T, Chen W H, Liu Y B, Gong L X, Jiang Z Q, Bhalothia D, Maiyalagan T, Jiang Z J 2023 Small 19 2304076Google Scholar

    [66]

    Van Helden J H, Van Den Oever P J, Kessels W M M, Van De Sanden M C M, Schram D C, Engeln R 2007 J. Phys. Chem. A 111 11460Google Scholar

    [67]

    Wu X Q, Guo Y R, Wang T, Sun B X, Liu Z L, Wu Y, Zhang S J, Zheng J, Li X G 2019 Chem. Commun. 55 4202Google Scholar

    [68]

    Lan X Z, Li G L, Jin R M, Li X Y, Zheng J 2022 Chemical Engineering Journal 450 138225Google Scholar

    [69]

    Li G L, Wu X Q, Guo H, Guo Y R, Chen H, Wu Y, Zheng J, Li X G 2020 ACS Appl. Mater. Interfaces 12 5951Google Scholar

    [70]

    Dong L, Chang G R, Feng Y, Yao X Z, Yu X Y 2022 Rare Met. 41 1583Google Scholar

    [71]

    Zhang J, Zhang X, Shi C, Yu X, Zhou Y, Di L 2024 Small 20 2406767Google Scholar

    [72]

    Chen G L, Xiang H Y, Guo Y C, Huang J, Chen W, Chen Z Y, Li T T, Ostrikov K (Ken) 2024 Carbon Energy 6 e522Google Scholar

    [73]

    Ye L J, Chen W H, Jiang Z J, Jiang Z Q 2024 Carbon Energy 6 e457Google Scholar

    [74]

    Xie Y, Qiu J F, Chen G L, Guo Y C, Tang P S, He B 2024 Inorg. Chem. 63 15467Google Scholar

    [75]

    Fu Z, Jiang Z Q, Hu T T, Jiang Z J 2022 Electrochim. Acta 419 140392Google Scholar

  • [1] 李龙, 崔行磊, 祝曦, 方志. 米量级宽幅间接介质阻挡放电等离子体产生及放电特性. 物理学报, doi: 10.7498/aps.74.20251163
    [2] 白成, 吴用, 辛雨慈, 牟俊峰, 江俊颖, 丁鼎, 夏雷, 余鹏. NaCu5S3复合NixFe-LDH的结构对水解氧析出性能的影响. 物理学报, doi: 10.7498/aps.72.20230146
    [3] 韩乾翰, 张亚容, 赖玉玲, 徐利云, 郭颖, 张菁, 俞建勇, 石建军. 等离子体制备自修复超疏水涂层纤维. 物理学报, doi: 10.7498/aps.70.20210585
    [4] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, doi: 10.7498/aps.70.20202078
    [5] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展. 物理学报, doi: 10.7498/aps.70.20202233
    [6] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展. 物理学报, doi: 10.7498/aps.70.20210077
    [7] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, doi: 10.7498/aps.66.134205
    [8] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, doi: 10.7498/aps.61.035201
    [9] 张国英, 杨丽娜, 张辉, 吴建军. 铂族及过渡金属对Ti合金钝化影响机理研究. 物理学报, doi: 10.7498/aps.59.2022
    [10] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, doi: 10.7498/aps.56.5937
    [11] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, doi: 10.7498/aps.56.5309
    [12] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, doi: 10.7498/aps.56.5304
    [13] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, doi: 10.7498/aps.56.7138
    [14] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, doi: 10.7498/aps.56.7106
    [15] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, doi: 10.7498/aps.56.5698
    [16] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响. 物理学报, doi: 10.7498/aps.55.4501
    [17] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, doi: 10.7498/aps.55.2397
    [18] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, doi: 10.7498/aps.55.281
    [19] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, doi: 10.7498/aps.55.4238
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  35
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-09
  • 修回日期:  2025-11-30
  • 上网日期:  2025-12-03

/

返回文章
返回