搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向车载运输环境的超导磁体三维冷质量支撑系统空间姿态优化

郑义川 徐策 王晖 陈顺中 程军胜 王秋良

引用本文:
Citation:

面向车载运输环境的超导磁体三维冷质量支撑系统空间姿态优化

郑义川, 徐策, 王晖, 陈顺中, 程军胜, 王秋良

Spatial attitude optimisation of a three-dimensional cold mass support system for superconducting magnets for on-board transport environments

ZHENG Yichuan, XU Ce, WANG Hui, CHEN Shunzhong, CHENG Junsheng, WANG Qiuliang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为提升超导磁体的抗冲击能力,使其适用于车载运输环境,本文进行了磁体三维冷质量支撑系统动载模型的推导,结合方向余弦平方和公式与高速公路卡车振动环境构造边界条件,通过引入应力差异的惩罚项对悬挂结构空间倾角进行优化。经过分析,在最优倾角分布下,冷质量支撑系统共呈现四类不同装配方式的空间姿态。结合车载运输激励频段分布,本文基于最大化一阶固有频率的原则设计出最优姿态,并确定了该姿态下悬挂结构的预紧力上下限。最后通过有限元仿真研究了高速公路谱随机振动激励下超导磁体的同轴度和应力变化特征。结果表明,当悬挂结构的三维空间角度为31.22°、68.50°和68.50°时,磁体力学性能达到最佳。该角度分布对应的最优空间姿态具有125.99Hz的一阶固有频率。仿真结果显示,在高速公路谱随机振动激励下,超导磁体同轴度变化量小于0.1mm,最大von Mises应力出现于碳纤维拉杆根部,其值远低于碳纤维复合材料的强度极限,表明该冷质量支撑系统满足车载运输环境的设计要求。
    The spatial attitude and dynamic performance of the cold mass support system for superconducting magnets are critical for engineering applications. This study aims to derive a design method for the spatial attitude of tie rods through a series of theoretical derivations and simulations, enabling superconducting magnets to possess a certain degree of dynamic environmental adaptability. This paper first constructs a mathematical model of the three-dimensional cold mass support system under impact loads. Stress formulas for the tie rod under vertical 5g, axial 3g, and lateral 3g impact loads are derived. Based on this, a penalty term for stress differences is introduced to construct the objective function, and the spatial inclination angle of the tie rod is optimised. After determining the acute angle between the tie rod and the coordinate axis, the cold mass support structure exhibits four different attitudes. In order to keep the natural frequency of the magnet far away from the main excitation frequency band of vehicle transportation, this paper uses the finite element method to perform modal analysis and proposes a method for posture design based on the principle of maximising the first-order natural frequency. Finally, random vibration simulations are conducted for the vibration environment of highway transportation. Reference points are established at both ends of the axis of the magnet body components and the room-temperature tube axis. The displacement response PSD curves and root mean square values of the reference points during vibration are analysed. The conclusions of this study are as follows:1) When the acute angles α, β, and γ formed by the tie rod with the vertical, axial, and lateral directions are 31.22°, 68.50°, and 68.50°, respectively, the mechanical performance of the three-dimensional cold mass support system reaches its optimal state. 2) When the tie rod is installed in the (a) spatial attitude configuration, the first-order natural frequency of the cold mass system is highest, with a value of 125.99 Hz. 3) During long-distance integrated vehicle transportation, the maximum values of the vertical and lateral displacements of the magnet assembly axis relative to the room-temperature tube axis are both less than 0.1 mm. The maximum stress locations are both at the root of the carbon fibre tie rod, far below the strength limit of carbon fibre composite materials, indicating that the superconducting magnet possesses a certain degree of dynamic environmental adaptability. The analysis results provide theoretical guidance and data support for the structural safety and stability of this type of superconducting magnet during long-distance integrated vehicle transportation.
  • [1]

    Bottura L, Gourlay S A, Yamamoto A, Zlobin A V 2015 IEEE Trans. Nucl. Sci. 63 751

    [2]

    Wang Y S 2011 The Basics of Superconducting Power Technology (1st edn.) (Beijing:Science Press) pp6-8 (in Chinese) [王银顺 2011 超导电力技术基础(第一版)(北京:科学出版社) 第6-8页]

    [3]

    Jiang X H, Xue J, Huang W C, Li Y 2024 Acta Phys. Sin. 52 6(in Chinese) [蒋晓华,薛芃,黄伟灿,李烨 2024 物理学报52 6]

    [4]

    Wang Q L 2007 The science of high-field superconducting magnets (Beijing:Science Press) pp24-37 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京:科学出版社) 第24-37页]

    [5]

    Wang L, Wu H, Li S Y, Guo X L, Pan H, Zheng S X, Green M A 2011 IEEE Trans. Appl. Supercond. 21 2259

    [6]

    Green M A, Bangerter R O 2001 IEEE Trans. Appl. Supercond. 11 1502

    [7]

    Chen S Z, Wang Q L, Sun W S, Sun J S, Cheng J S 2023 Trans. China Electrotech. Soc. 38 879(in Chinese) [陈顺中,王秋良,孙万硕,孙金水,程军胜 2023 电工技术学报38 879]

    [8]

    Hao G J, Zhu Y F, Fan J P, He K, Xie J, Liu P, Zhang Y, Xi W B 2024 Cryog. Supercond. 52 6(in Chinese) [郝国健,朱银锋,范吉鹏,何坤,谢杰,刘鹏,张玉,奚维斌 2024 低温与超导52 6]

    [9]

    Wu J R 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [吴军荣 2023 博士学位论文 (合肥:中国科学技术大学)]

    [10]

    Liu Y Y 2018 Ph. D. Dissertation (Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences) (in Chinese) [刘以勇 2018 博士学位论文 (上海:中国科学院上海应用物理研究所)]

    [11]

    Dai Z 2017 M.S. Thesis ( Beijing: The Institute of High Energy Physics of the Chinese Academy of Sciences) (in Chinese) [戴忠 2017 硕士学位论文 (北京:中国科学院高能物理研究所)]

    [12]

    Li L K, Wang Q L, Zhao B Z, Ni Z P, Cui C Y, Wang H S 2011 IEEE Trans. Appl. Supercond. 21 3640

    [13]

    Zhang K, Zhu Z, Zhao L, Hou Z L, Wang M F, Zhang G Q, Yao W C, Ning F P, Wang Z J, Zhang X T 2014 IEEE Trans. Appl. Supercond. 25 1

    [14]

    Zhang K, Zhu Z, Zhang G Q, Dai Z, Mu Z H, Wang M F, Zhao L 2016 IEEE Trans. Appl. Supercond. 26 1

    [15]

    Huang L K, Wang Q L, Zhao B Z, Wang H, Li L K, Li Y 2011 Cryog. Supercond. 39 22(in Chinese) [黄礼凯,王秋良,赵保志,王晖,李兰凯,李毅 2011 低温与超导39 22]

    [16]

    Xu C, Liu H, Liu J H, Dai Y M, Chen S Z, Cheng J S, Wang Q L, Huo S F, Shi Y C, Huang H J 2024 HPL Part. Beams 36 80(in Chinese) [徐策,刘辉,刘建华,戴银明,陈顺中,程军胜,王秋良,霍少飞,史彦超,黄慧杰 2024 强激光与粒子束36 80]

    [17]

    Hopkins R A, Payne D A 1987 Cryogenics 27 209

    [18]

    Fan Z D, Xu C, Zou W, Wang H, Zheng Y C, Chen S Z, Cheng J S, Wang Q L 2025 Phys.C 634

    [19]

    Zhang K 2014 M.S. Thesis ( Beijing: The Institute of High Energy Physics of the Chinese Academy of Sciences) (in Chinese) [张恺 2014 硕士学位论文 (北京:中国科学院高能物理研究所)]

    [20]

    Wang X W, Zhu Z A, Wang M L, Zhao L, Liu X Y, Xie Z T, Sun L T, Zhang G Q 2020 Cryog. 2020 11(in Chinese) [王校威,朱自安,王梦琳,赵玲,刘旭洋,谢宗泰,孙丽婷,张国庆 2020 低温工程 11]

    [21]

    Yin J 2012 M.S. Thesis ( Harbin: Harbin Institute of Technology) (in Chinese) [殷赳 2012 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [22]

    Chen Y X 2024 ANSYS Workbench 2024 Finite Element Analysis: From Beginner to Expert (Beijing:Publishing House of Electronics Industry) p274 (in Chinese) [陈艳霞 2024 ANSYS Workbench 2024 有限元分析从入门到精通(北京:电子工业出版社) 第274页]

    [23]

    Li Y T 2020 Mechanical Vibration Theory and Applications (Beijing:Science Press) p413 (in Chinese) [李有堂 2020 机械振动理论与应用(北京:科学出版社) 第413页]

  • [1] 刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新. 中国空间站冷原子光钟激光系统. 物理学报, doi: 10.7498/aps.72.20230412
    [2] 吕庆先, 李赛, 涂海涛, 廖开宇, 梁振涛, 颜辉, 朱诗亮. 超导-冷原子复合系统的研究进展. 物理学报, doi: 10.7498/aps.72.20230985
    [3] 蒋晓华, 薛芃, 黄伟灿, 李烨. 14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一. 物理学报, doi: 10.7498/aps.70.20202042
    [4] 谭凡教, 苏金宇, 侯晴宇, 王佳轩, 王一惠. 基于时谱信号分析的在轨空间目标姿态感知. 物理学报, doi: 10.7498/aps.69.20200098
    [5] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试. 物理学报, doi: 10.7498/aps.66.248401
    [6] 徐伟, 杨贵东, 岳晓乐. 随机参激下Duffing-Rayleigh碰撞振动系统的P-分岔分析. 物理学报, doi: 10.7498/aps.65.210501
    [7] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析. 物理学报, doi: 10.7498/aps.65.058401
    [8] 蓝春波, 秦卫阳. 带碰撞双稳态压电俘能系统的俘能特性研究. 物理学报, doi: 10.7498/aps.64.210501
    [9] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证. 物理学报, doi: 10.7498/aps.64.080503
    [10] 郭胜鹏, 李东旭, 范才智, 孟云鹤. 受重力梯度扰动的空间机器人姿态动力学非线性特征分析. 物理学报, doi: 10.7498/aps.63.100504
    [11] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, doi: 10.7498/aps.63.047502
    [12] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振. 物理学报, doi: 10.7498/aps.63.164302
    [13] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, doi: 10.7498/aps.62.020701
    [14] 钭斐玲, 胡延庆, 黎勇, 樊瑛, 狄增如. 空间网络上的随机游走. 物理学报, doi: 10.7498/aps.61.178901
    [15] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计. 物理学报, doi: 10.7498/aps.61.228701
    [16] 闫辉, 姜洪源, 刘文剑, 郝振东, Ulannov A. M.. 金属橡胶隔振器随机振动加速度响应分析. 物理学报, doi: 10.7498/aps.59.4065
    [17] 王 亮, 徐 伟, 李 颖. 随机激励下二自由度碰撞振动系统的响应分析. 物理学报, doi: 10.7498/aps.57.6169
    [18] 邢永忠, 徐躬耦. 经典混沌系统在相应于初始相干态的量子子空间中的随机性. 物理学报, doi: 10.7498/aps.48.769
    [19] 超导材料组. 较低温扩散法Nb3Sn带绕制成十万高斯超导磁体. 物理学报, doi: 10.7498/aps.24.452
    [20] 吴杭生. 铁磁体的超导电理论. 物理学报, doi: 10.7498/aps.19.103
计量
  • 文章访问数:  36
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-15

/

返回文章
返回