搜索

x
中国物理学会期刊

基于卷积神经网络与改进视觉变换器的涡旋光束叠加态轨道角动量模式识别方法

CSTR: 32037.14.aps.75.20251048

Orbital angular momentum pattern recognition method for vortex beam superposition states based on convolutional neural network and improved vision transformer

CSTR: 32037.14.aps.75.20251048
PDF
HTML
导出引用
  • 本文提出了一种基于卷积神经网络(convolutional neural network, CNN)与改进视觉变换器(vision transformer, VIT)的涡旋光束叠加态轨道角动量(orbital angular momentum, OAM)模式识别方法. 以海洋湍流畸变的三组拉盖尔-高斯光束模式叠加光场强度分布图为输入, 有机整合了CNN的局部特征提取优势与稀疏注意力机制驱动的VIT的全局快速分类能力, 实现端到端的波前畸变高效精准识别. 通过数值仿真模拟海洋湍流环境叠加态OAM模式, 利用功率谱反演法模拟海洋湍流, 以识别准确率和混淆矩阵作为OAM模式识别的评估指标. 实验结果表明, CNN-VIT模型在不同海洋湍流强度、波长、传输距离和模式间隔条件下均展现出优异的OAM模式识别准确率性能. 与现有的CNN和VIT相比, 本文模型在强海洋湍流条件下识别准确率分别提升了23.5%和9.65%. 这证明了CNN-VIT模型在涡旋光叠加态OAM模式识别的应用潜力.

     

    This work proposes a pattern recognition method for the superposition state orbital angular momentum (OAM) of vortex beams based on convolutional neural network (CNN) and improved vision transformer (VIT). Organically integrating the local feature extraction advantages of CNN with the global fast classification ability of VIT driven by sparse attention mechanism, using three sets of Laguerre-Gaussian (LG) beam patterns with superimposed light field intensity distribution maps of ocean turbulence distortion as input, efficient and accurate recognition of end-to-end wavefront distortion is realized. MATLAB numerical simulation is adopted to simulate the superposition state LG beam in ocean turbulent environment, power spectrum inversion method is used to simulate ocean turbulence, and recognition accuracy and confusion matrix are used as evaluation indicators for OAM pattern recognition. The experimental results show that the CNN-VIT model exhibits excellent performance in OAM pattern recognition accuracy under different ocean turbulence intensities, wavelengths, transmission distances, and mode intervals. Compared with existing CNN and VIT, the proposed model improves recognition accuracy by 23.5% and 9.65% respectively under strong ocean turbulence conditions, thus exhibiting strong generalization ability under unknown ocean turbulence strengths. This demonstrates the potential application of the CNN-VIT model in OAM pattern recognition of vortex light superposition states.

     

    目录

    /

    返回文章
    返回