搜索

x
中国物理学会期刊

通过界面功函数工程增强Al2Te3/In2Se3铁电隧道结中的隧穿电阻效应

CSTR: 32037.14.aps.75.20251308

Enhanced tunneling electroresistance through interfacial work function engineering in Al2Te3/In2Se3 ferroelectric tunnel junctions

CSTR: 32037.14.aps.75.20251308
PDF
HTML
导出引用
  • 实现对量子隧穿电阻的精确调控, 是铁电隧道结技术迈向应用的核心瓶颈. 本研究提出了一种基于界面功函数工程的策略, 其核心在于利用铁电极化翻转, 主动调控异质结界面的能带对齐, 从而在势垒层中诱导出可逆的金属-绝缘体相变, 实现对隧穿电阻的调控. 以Al2Te3/In2Se3范德瓦耳斯异质结为研究对象, 通过第一性原理计算证明, 对界面功函数的策略性调控可在势垒层中诱导出可逆的金属-绝缘体转变, 从而显著地改变其隧穿电阻. 非平衡输运模拟进一步显示, 该结构实现了高达2.69×105%的隧穿电阻比值. 研究结果不仅凸显了Al2Te3/In2Se3作为高性能铁电隧道结的潜力, 也为在低维铁电存储器件中设计超高隧穿电阻效应确定了一种普适的设计策略. 这项工作为开发多状态非易失性存储器提供了新的思路.

     

    In recent years, two-dimensional (2D) ferroelectric materials have attracted widespread interest due to their ultrathin geometry, high stability, and switchable polarization states. Ferroelectric tunnel junctions (FTJs) made from 2D ferroelectric materials exhibit exceptionally high tunnel electroresistance (TER) ratios, making them leading candidates for next-generation non-volatile memory and logic devices. However, advancing FTJ technology depends on overcoming the critical challenge of precisely controlling quantum tunneling resistance. Therefore, this study proposes a strategy of interfacial work function engineering, which actively modulates the band alignment of a heterostructure through ferroelectric polarization switching, induces a reversible metal-insulator transition in the barrier layer, and modulates TER. Using a van der Waals heterostructure composed of Al2Te3/In2Se3 as a model system, we demonstrate through first-principles calculations that the strategic manipulation of interfacial work functions can induce a reversible metal-insulator transition in the barrier, thereby drastically changing the tunneling conductance. Further analysis indicates that a work function mismatch between the two ferroelectric materials causes varying degrees of interfacial charge transfer, thereby triggering a metal-insulator transition in the van der Waals ferroelectric heterostructure as the external electric field is reversed. Non-equilibrium transport simulations reveal an unprecedented TER ratio of 2.69×105%. Our findings not only highlight Al2Te3/In2Se3 as a promising platform for high-performance FTJs but also establish a universal design strategy for engineering ultrahigh TER effects in low-dimensional ferroelectric memory devices. This work opens new avenues for developing energy-efficient, non-volatile memory with enhanced scalability and switching characteristics.

     

    目录

    /

    返回文章
    返回