搜索

x
中国物理学会期刊

基于中子和质子分离能约束的神经网络对原子核质量的预测

CSTR: 32037.14.aps.75.20251315

Prediction of atomic nuclear mass using neural networks constrained by neutron and proton separation energy

CSTR: 32037.14.aps.75.20251315
PDF
HTML
导出引用
  • 原子核质量是反映核结构与稳定性的重要物理量, 在核结构研究与天体核物理过程中均具有关键作用. 目前, 基于神经网络的研究多集中于结合能或中子、质子分离能的单一预测, 较少关注结合能与分离能之间的物理约束关系. 本研究基于相对论平均场点耦合模型 PCF-PK1, 结合神经网络对原子核结合能以及单、双中子和单、双质子分离能进行了系统预测. 在训练过程中引入分离能约束, 以保持结合能与分离能之间的物理自洽性. 结果表明, 神经网络能够显著提升结合能的整体预测精度. 其中, 在特定损失函数权重组合下, 结合能的预测均方根偏差可达到 0.140 MeV. 进一步分析发现, 在保持物理自洽性的前提下, 引入分离能约束能够同时对结合能和分离能的预测结果实现小幅优化. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00239中访问获取.

     

    Nuclear mass is a fundamental observable value that reflects nuclear structure and stability, and plays a key role in nuclear physics and astrophysics. Most of the existing neural network research focuses on predicting the binding energy or neutron/proton separation energy alone, little attention is paid to the physical correlations between these observable quantities. A physical information-based artificial neural network (ANN) is developed based on the relativistic point-coupling model PCK-PK1 to systematically predict nuclear binding energy and single/double neutron/proton separation energy, while maintaining the physical self-consistency of the predictions. To evaluate the influence of introducing separation-energy constraints, different combinations of loss function weights are used to train the networks, enabling a comparison between networks without separation-energy constraints (such as ANN1) and those containing such constraints (such as ANN3).
    The neural network significantly improves the overall prediction accuracy of binding energy compared with the PCF-PK1 model. Without separation-energy constraints, ANN1 already achieves high precision for binding energy (RMSE \approx 0.147 MeV) and separation energy (RMSE \approx 0.158–0.185 MeV). Incorporating the separation-energy constraints into ANN3 results in a slight improvement in overall prediction accuracy. The binding energy predictions improve by approximately 4.6%, while the separation energy predictions increase by 8.9%–12.0%. The improvement is particularly noticeable for nuclei where the deviations of ANN1 predictions from experimental values exceed 0.2 MeV. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00239.

     

    目录

    /

    返回文章
    返回