搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低空穴衬底电流的新型体硅LIGBT

段宝兴 李玉滢 唐春萍 任宇壕 杨银堂

引用本文:
Citation:

低空穴衬底电流的新型体硅LIGBT

段宝兴, 李玉滢, 唐春萍, 任宇壕, 杨银堂

Novel bulk silicon LIGBT with low hole substrate current

DUAN Baoxing, Li Yuying, TANG Chunping, REN Yuhao, YANG Yintang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文提出一种新型延伸多晶硅栅体硅型横向绝缘栅双极晶体管(Extended polysilicon Gate Bulk Silicon LIGBT,EGBS-LIGBT),该器件结构为P型衬底上依次外延N型、P型硅作为N漂移区和P漂移区,相当于将常规SOI-LIGBT的埋氧层替换成N型硅,其优势在于极大降低成本且能降低空穴衬底电流。在阳极正偏时,P漂移区上方的肖特基型延伸多晶硅栅(Schottky-Extended polysilicon Gate,S-EG)在P漂移区的内侧表面形成电子反型层,以获得低的正向导通压降(Von)。此外,阳极采用肖特基接触降低空穴注入效率,而P漂移区快速的动态电场调制能力还可迅速提取存储在漂移区中的过剩载流子,且其多子为空穴还能促进关断时过剩电子的快速复合,关断能量损耗(Eoff)得以降低。仿真结果表明:EGBS-LIGBT在显著降低空穴衬底电流的同时,改善了EoffVon间的折衷关系。该器件的Von为1.59V、空穴衬底电流为1.9mA/cm2Eoff为0.51mJ/cm2、击穿电压(BV)达701V。相较常规LIGBT,该结构在保持Von基本不变的前提下,将空穴衬底电流降至1/105、Eoff降低69.8%、BV提升19.6%。
    This paper proposes a new extended polysilicon gate bulk silicon lateral insulated gate bipolar transistor (EGBS-LIGBT). In order to suppress the hole substrate current, N-type and P-type silicon are epitaxially grown on the P-substrate sequentially to serve as N-drift and P-drift. The PN junction composed of two drift regions is in a reverse-biased state during both normal conduction and off states of the device. The built-in potential within it forms a hole-blocking barrier to prevent holes from moving towards the substrate. Meanwhile, a Schottky-extended polysilicon gate (S-EG) is added on the P-drift, forming a thin electron-inversion layer on the inner surface of the P-drift, which can achieve a low on-state voltage (Von). In addition, the Schottky contact at the anode reduces hole injection efficiency, while the rapid dynamic electric field modulation capability of P-drift enables the swift extraction of excess carriers stored in this region. The majority carriers in the P-drift being holes can also accelerate the recombination with the excess electrons during the turn-off phase. The above factors help to reduce the turn-off time and the turn-off energy loss (Eoff). Simulation results show that EGBS-LIGBT effectively reduces the hole substrate current while improves the trade-off relationship between Eoff and Von. In this paper, EGBS-LIGBT has a Von of 1.59 V, hole substrate current is 1.9 mA/cm2, Eoff is 0.51 mJ/cm2, and breakdown voltage (BV) is 701V. Compared with conventional LIGBT, Von is approximately equal, hole substrate current is reduced to 1/105 of it, Eoff is reduced by 69.8%, and BV is improved by 19.6%.
  • [1]

    Du Y C 2025 M.S. Dissertation (Nanjing: Southeast University) (in Chinese) [杜益成 2025硕士学位论文 (南京:东南大学)]

    [2]

    N. Sakurai, M. Mori, T. Yatsuo 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. ISPSD 1990-04 p66

    [3]

    D. Disney, T. Letavic, T. Trajkovic, T. Terashima, A. Nakagawa 2017 IEEE Trans. Electron Devices 64 659

    [4]

    L. Sun, B. Duan, Y. Wang, Y. Yang 2019 IEEE Transactions on Electron Devices 66 2675

    [5]

    J. Wei, K. Dai, K. Yang, P. Zhu, J. Li, Z. Li, B. Zhang, X. Luo 2023 IEEE Transactions on Electron Devices 70 662

    [6]

    B. Duan, J. Wang, C. Tang, Y. Yang 2024 IEEE Electron Device Lett. 45 1926

    [7]

    J. Yang, M. Zhang, Y. Wu, M. Wang, J. Wei 2022 IEEE Electron Device Lett. 43 272

    [8]

    R. Zeng, Z. Wu, S. Lei, L. Liao, Y. Feng 2024 IEEE Access 12 123071

    [9]

    Su, Goodson, Antoniadis, Flik, Chung 1992 International Technical Digest on Electron Devices Meeting San Francisco, CA, USA, 1992 p357

    [10]

    E. Arnold, H. Pein, S. P. Herko 1994 Proceedings of IEEE International Electron Devices Meeting San Francisco, CA, USA, 1994 p813

    [11]

    C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, F.-Y. Jian, W.-H. Lo, S.-H. Ho, C.-E. Chen, W.-L. Chung, J.-M. Shih, G. Xia, O. Cheng, and C.-T. Huang 2011 Dai IEEE Electron Device Lett. 32 847

    [12]

    W. W. T. Chan, J. K. O. Sin S. S. Wong 1995 Proceedings of International Electron Devices Meeting 1995-12 p971

    [13]

    B. Bakeroot, J. Doutreloigne, P. Moens 2006 IEEE Electron Device Lett. 27 492

    [14]

    B. Bakeroot, J. Doutreloigne, P. Vanmeerbeek, P. Moens 2008 IEEE Transactions on Electron Devices 55 435

    [15]

    R. Y. Su, C. C. Cheng, K. H. Huo, F. J. Yang, J. L. Tsai, R. S. Liou, and H. C. Tuan 2012 24th International Symposium on Power Semiconductor Devices and ICs Bruges, Belgium, 2012-06 p221

    [16]

    Y.-C. Tsai, J. Gong, W.-C. Chan, S.-Y. Wu, C. Lien 2015 IEEE Electron Device Lett. 36 929

    [17]

    H. Fujii, S. Komatsu, M. Sato, T. Ichikawa 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs 2011-05 p372

    [18]

    V. Pathirana, N. Udugampola, T. Trajkovic, F. Udrea 2018 IEEE Electron Device Lett. 39 866

    [19]

    Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang 2024 Acta Phys. Sin. 73(7) 078501 (in Chinese) [段宝兴, 刘雨林, 唐春萍, 杨银堂 2024 物理学报 73(7) 078501]

    [20]

    Duan Bao-Xing, Wang Jia-Sen, Tang Chun-Ping, Yang Yin-Tang 2024 Acta Phys. Sin. 2024 73(15) 157301 (in Chinese) [段宝兴, 王佳森, 唐春萍, 杨银堂 2024 物理学报 73(15) 157301]

    [21]

    DUAN Baoxing, REN Yuhao, TANG Chunping, YANG Yintang 2025 Acta Phys. Sin. 2025 74(8) 087301 (in Chinese) [段宝兴, 任宇壕, 唐春萍, 杨银堂 2025 物理学报 74(8) 087301]

    [22]

    Zuxin Qin, E. M. S. Narayanan 1997 Proceedings of 9th International Symposium on Power Semiconductor Devices and Ic’s Weimar, Germany,1997 p313

    [23]

    X. Luo 2019 IEEE Trans. Electron Devices 66 1390

    [24]

    Y. Gu 2024 IEEE Trans. Electron Devices 71 381

    [25]

    L. Sun, B. Duan, Y. Yang 2021 IEEE J. Electron Devices Soc. 9 409

  • [1] 孙智玄, 赵长松, 程芳. 铁电异质结T-NbTe2/Ga2S3的接触性质及调控. 物理学报, doi: 10.7498/aps.74.20241705
    [2] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, doi: 10.7498/aps.73.20240530
    [3] 段宝兴, 刘雨林, 唐春萍, 杨银堂. 肖特基结多数载流子积累新型绝缘栅双极晶体管. 物理学报, doi: 10.7498/aps.73.20231768
    [4] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, doi: 10.7498/aps.72.20230318
    [5] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报, doi: 10.7498/aps.71.20220855
    [6] 梁前, 钱国林, 罗祥燕, 梁永超, 谢泉. 外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控. 物理学报, doi: 10.7498/aps.71.20220882
    [7] 闫大为, 吴静, 闫晓红, 李伟然, 俞道欣, 曹艳荣, 顾晓峰. 晶格匹配InAlN/GaN异质结肖特基接触反向电流的电压与温度依赖关系. 物理学报, doi: 10.7498/aps.70.20201355
    [8] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢. SiC电力电子器件金属接触研究现状与进展. 物理学报, doi: 10.7498/aps.70.20210675
    [9] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, doi: 10.7498/aps.68.20190020
    [10] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, doi: 10.7498/aps.67.20181191
    [11] 刘宾礼, 刘德志, 罗毅飞, 唐勇, 汪波. 基于电压电流的IGBT关断机理与关断时间研究. 物理学报, doi: 10.7498/aps.62.057202
    [12] 万宁, 郭春生, 张燕峰, 熊聪, 马卫东, 石磊, 李睿, 冯士维. AlGaAs/InGaAs PHEMT栅电流参数退化模型研究. 物理学报, doi: 10.7498/aps.62.157203
    [13] 李博, 邵剑峰. 瞬态光电流对有机薄膜光伏器件中肖特基接触的研究. 物理学报, doi: 10.7498/aps.61.077301
    [14] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, doi: 10.7498/aps.59.550
    [15] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, doi: 10.7498/aps.59.3466
    [16] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, doi: 10.7498/aps.58.494
    [17] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, doi: 10.7498/aps.57.4487
    [18] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, doi: 10.7498/aps.55.6085
    [19] 竺 云, 王太宏. 量子点器件的三端电测量研究. 物理学报, doi: 10.7498/aps.52.677
    [20] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, doi: 10.7498/aps.52.2553
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回