搜索

x
中国物理学会期刊

基于机器学习的原子核质量表探究

CSTR: 32037.14.aps.75.20251526

Further exploration of the machine-learning-based nuclear mass table

CSTR: 32037.14.aps.75.20251526
PDF
HTML
导出引用
  • 原子核质量作为原子核的基本物理量之一, 对理解和研究原子核结构与核反应、核子-核子基本相互作用等有重要作用, 但是精确预测远离 \beta 稳定线的原子核质量依旧是一个巨大挑战. 本文基于机器学习优化的原子核质量表, 研究了自2022年以来新测量的原子核质量、剩余质子-中子相互作用( \textδ V_\mathrmpn)和重核 \alpha 衰变能. 研究表明: 1)对于23个新测量原子核, 经机器学习优化后的质量表给出的均方根偏差在0.51—0.58 MeV之间, 远低于液滴模型(LDM)、Weizsäcker-Skyrme-4 (WS4)、有限力程小液滴模型(FRDM)、Duflo-Zucker(DZ)质量表所给出的3.275, 1.058, 0.752, 0.785 MeV; 2)机器学习优化后的质量表给出的N = Z时原子核的\textδ V_\mathrmpn与最新的实验数据相符合; 3)通过机器学习优化的原子核质量表计算得到的重核 \alpha 衰变能的均方根偏差也大幅降低. 此外, 利用贝叶斯模型平均对四种机器学习优化后的质量模型进行加权平均, 可以得到更精确的预测. 这些结果表明, 经过机器学习方法优化后的原子核质量表具有良好的外推能力, 可以为相关研究提供有益的参考. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00246中访问获取.

     

    The mass of the atomic nucleus, as one of the fundamental physical quantities of the atomic nucleus, plays an important role in understanding and researching the structure of the atomic nucleus and nuclear reactions, and the basic interactions between nucleons. However, accurately predicting the mass of nuclei far from the \beta stability line remains a huge challenge. Based on the machine-learning-refined mass model, we investigate the newly measured atomic nucleus masses since 2022, along with the residual proton-neutron interaction (\textδ V_\mathrmpn) and the α-decay energy of heavy nucleus. It is found that: 1) For the 23 newly measured atomic nuclei, the root mean square deviations obtained by the machine-learning-refined mass models are between 0.51 and 0.58 MeV, which are significantly lower than 3.275, 1.058, 0.752, and 0.785 MeV given by the liquid droplet model (LDM), Weizsäcker-Skyrme-4 (WS4), finite-range droplet model (FRDM), and Duflo-Zucker (DZ), respectively. 2) The \textδ V_\rm pn of the atomic nucleus with N = Z obtained from machine-learning-refined mass models is consistent with the latest experimental data. 3) The root mean square deviations of the α-decay energy of heavy nuclei obtained from the machine-learning-refined mass models have also been significantly reduced. Furthermore, by employing the Bayesian model average approach to combine the results from different machine-learning-refined mass models, we obtain more accurate predictions. These findings demonstrate that such models have good extrapolation capabilities and provide useful insight for further research. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00246.

     

    目录

    /

    返回文章
    返回