搜索

x
中国物理学会期刊

Ising自旋体系的非平衡动态相变

CSTR: 32037.14.aps.55.2057

Nonequilibrium dynamic phase transition in a kinetic Ising spin system

CSTR: 32037.14.aps.55.2057
PDF
导出引用
  • 在平均场理论架构下, 以含时金兹堡-朗道和Glauber动力学这两类动态模型为基础,研究 了受外场和温度共同驱动的Ising自旋体系的非平衡动态相变.确定了界定动态无序(动态顺 磁相P)和动态有序(动态铁磁相F)转变的动态相界.并根据动态序参量Q和Binder参数U随系统 温度t(r0)、驱动外场频率ω和振幅h0的变化规律,就上述两类模 型的动态相界上是否存在区分连续动态转变和非连续动态转变的三临界点这一引发争议的问 题做出了进一步分析说明.

     

    We studied within the framework of a mean-field approach the nonequilibrium dyn amic phase transition of a kinetic Ising spin system subject to a perturbative f ield and temperature simultaneously by comparison between time-dependent Ginzbur g-Landau and Glauber dynamics models. The dynamic phase transition (DPT) boundar ies, separating a symmetry-breaking dynamic ordered phase from its symmetric dyn amic disordered counterpart, were identified through a systematic simulation of the above two models. The dependence of the dynamic order parameter Q and the fo urth order cumulant ratio U upon the temperature t(r0), the frequency ω and amplitude h0 of driving field were also investigated in detai l. A discussion was presented concerning the current controversies on whether bo th a discontinuous dynamic phase transition occurs possibly below a specific low temperature and a tri-critical point exists on the DPT boundary in a kinetic Is ing spin system.

     

    目录

    /

    返回文章
    返回