搜索

x
中国物理学会期刊

密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性

CSTR: 32037.14.aps.57.5491

Structures and magnetism of BnNi(n=6—12) clusters from density-functional theory

CSTR: 32037.14.aps.57.5491
PDF
导出引用
  • 基于第一性原理,用密度泛函理论中的广义梯度近似(generalized gradient approximation,GGA)方法,在充分考虑自旋多重度的前提下,优化并得到了Bn(n=6—12)和BnNi(n=6—12)团簇的平衡构型,按照能量最低原理确定其基态结构. Bn团簇的计算结果与已有的理论结果相一致. 当Ni原子掺杂在Bn团簇

     

    Based on the first-principle, all geometric structures of Bn and BnNi clusters with n=6—12 have been optimized by using density functional theory with generalized gradient approximation, the equilibrium geometries for different spin multiplicities and ground-state structures have been determined. The results of Bn clusters are in good agreement with previous conclusions. When the Ni atom is doped in Bn clusters, the ground-state structure of the BnNi clusters favor three dimensional, but B12Ni cluster has the planar structure. The spin multiplicity of ground-state structures, except for n=8, obey the 2 and 1 alternate rule. The average atomic binding energies (Eb), second-order energy differences (Δ2E) and the HOMO-LUMO (gap) of ground-state structures have been calculated and discussed. The results indicated that n= 8 is the magic number of BnNi(n=6—12) clusters, implying that B8Ni cluster possess relatively higher stability. Calculated results on the magnetic moments show that the magnetic moment of B8Ni cluster is the biggest (2μB), the total magnetic moment and the average magnetic moment of clusters show the odd-even oscillation tendency along with the size increasing, and the magnetic moment is mainly provided by the 3 d orbital of Ni atom.

     

    目录

    /

    返回文章
    返回