The geometric and magnetic properties of MPb10 (M=Ti,V,Cr,Cu,Pd)clusters with four probable isomers have been studied using the generalized grandient approximation based on density functional theory. It was found that the D4d structures of MPb10 (M=Ti,V,Cr,Cu,Pd) have the highest binding energy and largest energy gaps among the four possible isomers, indicating that the D4d structure is the ground statess of MPb10 cluster with high kinetical stability. The magnetism study shows that the ground states of TiPb10,VPb10 and CuPb10 clusters have 2 μB, 1 μB and 1 μB magnetic moments, respectively. For M=Ti and Cu, the magnetic ordering of MPb10 clusters is in a weak ferromagnetic arrangement between M and Pb atoms, while there is both weak ferromagnetic and weak antiferromagnetic arrangements between Cu and Pb atoms for the CuPb10 cluster. On the other hand, there is no magnetic moment in the CrPb10 and PdPb10 clusters. Thus, the magnetic properties of MPb10 clusters could be tuned by doping different transition metal atoms into Pb10 cage.