搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2Te3 合金低温热电性能及冷能发电研究

蒋明波 吴智雄 周敏 黄荣进 李来风

引用本文:
Citation:

Bi2Te3 合金低温热电性能及冷能发电研究

蒋明波, 吴智雄, 周敏, 黄荣进, 李来风

Cryogenic thermoelectric properties of BiTe-based alloys and cryo-energy power generation

Jiang Ming-Bo, Wu Zhi-Xiong, Zhou Min, Huang Rong-Jin, Li Lai-Feng
PDF
导出引用
  • 利用机械合金化和冷压烧结法制备得到n型和p型Bi2Te3基热电材料,在80—300 K温度范围测量了电导率、Seebeck系数,结果表明其具有良好的低温热电性能.采用Bi2Te3基热电材料制备出半导体热电器件,并配合附属设备搭建出一套半导体温差发电装置.利用液氮汽化时释放的冷能,对半导体热电器件的发电性能进行实验研究,得出这种半导体热电器件输出电压、输出功率与电流关系式,测得最大的输出功率达到1.33 W,从而证明了冷
    The BiTe-based alloys were fabricated by mechanical alloying and cold-pressing sintering. Seebeck coefficient and electrical conductivity were measured at the temperature range of 80—300 K. Results showed that the thermoelectric properities of the materials were excellent during the experiments. With the thermoelectric conversion device made of BiTe-based alloys, a new cryo-energy utilization equipment were established. By applying liquid nitrogen in the experiments, the cryo-energy was released during evaporation of liquid nitrogen, and then, a study of electric properties of thermoelectric conversion devices was further deployed. The relationship of output voltage and output power versue current intensity was obtained from the experiments. The maximum output power in the experiments was up to 1.33 W,which verified the feasibility of cryo-energy power generation.
    • 基金项目: 国家自然科学基金(批准号:50802101,10904153)资助的课题.
    [1]

    Gao M, Zhang J S 1996 Thermoelectric Conversion and Its Applications(Beijing: Orchance Industry Press) p159 (in Chinese) [高 敏、张景韶 温差电转换及其应用 (北京: 兵器工业出版社) 第159页]

    [2]

    Hu J M, Xin J B, Lü Q, Wang Y Y, Rong J Y 2006 Acta Phys. sin. 54 4843 (in Chinese) [胡建民、信江波、吕 强、王月媛、荣剑英 2006 物理学报 54 4843]

    [3]

    Yim W M, Rosi F D 1972 J. Solid State Electron. 15 1121

    [4]

    Rowe D R 1995 Handbook of Thermoelectrics (BocaRaton, FL: CRC Press)p597

    [5]

    Weise J R, Muller L 1960 J. Phys. Chem. Solids 15 13

    [6]

    Jiang J, Li Y L, Xu G J, Cui P, Wu T, Chen L D, Wang G 2007 Acta Phys. Sin. 56 2858 (in Chinese) [蒋 俊、李亚丽、许高杰、崔 平、吴 汀、陈立东、王 刚 2007 物理学报 56 2858]

    [7]

    Sokolov O B, Skipidarov S Y, Duvankov N I 2000 J.Crystal Growth 236 181

    [8]

    Ettenberg M H, Maddux J R, Taylor P J, Jesser W A, Rosi F D 1997 J. Crystal Growth 179 495

    [9]

    Jiang J, Chen L D, Yao Q, Bai S Q, Wang Q 2005 Mater. Chem. Phys. 92 39

    [10]

    Jiang J, Chen L D, Yao Q, Bai S Q, Wang Q 2005 J. Crystal Growth 277 258

    [11]

    Qian J F, Yang C J 2005 Chinese Journal of Power Sources 29 459 (in Chinese) [钱剑锋、杨灿军 2005 电源技术 29 459]

    [12]

    Sun W, Hu P, Chen Z S, Jia L 2005 Acta Energ. Solar. Sin. 26 722 (in Chinese) [孙 炜、胡 芃、陈则韶、贾 磊 2005 太阳能学报 26 722]

    [13]

    Liu E K, Zhu B S, Luo J S 1997 Semiconductor Physics (Beijing: National Defence Industry Press) p86 (in Chinese) [刘恩科、朱秉生、罗晋生 1997 半导体物理学(北京:国防工业出版社)第86页]

    [14]

    Gao M, Zhang J S 1996 Thermoelectricity Changes and Their Applications (Beijing: Publishing House of Ordnance Industry) p32 (in Chinese) [高 敏、张景韶 1996温差电转换及其应用(北京:兵器工业出版社) 第32页]

    [15]

    K Uemura, I Nishida 1988 Thermoelectric Semiconductors and Their Applications (Tokyo: Nikkan-Kogyo Shinbun Press) p145

    [16]

    Lü Q, Rong J Y, Zhao L, Zhang H C, Hu J M, Xin J B 2005 Acta Phys. Sin. 54 3321 (in Chinese) [吕 强、荣剑英、赵 磊、张红晨、胡建民、信江波 2005 物理学报 54 3321]

  • [1]

    Gao M, Zhang J S 1996 Thermoelectric Conversion and Its Applications(Beijing: Orchance Industry Press) p159 (in Chinese) [高 敏、张景韶 温差电转换及其应用 (北京: 兵器工业出版社) 第159页]

    [2]

    Hu J M, Xin J B, Lü Q, Wang Y Y, Rong J Y 2006 Acta Phys. sin. 54 4843 (in Chinese) [胡建民、信江波、吕 强、王月媛、荣剑英 2006 物理学报 54 4843]

    [3]

    Yim W M, Rosi F D 1972 J. Solid State Electron. 15 1121

    [4]

    Rowe D R 1995 Handbook of Thermoelectrics (BocaRaton, FL: CRC Press)p597

    [5]

    Weise J R, Muller L 1960 J. Phys. Chem. Solids 15 13

    [6]

    Jiang J, Li Y L, Xu G J, Cui P, Wu T, Chen L D, Wang G 2007 Acta Phys. Sin. 56 2858 (in Chinese) [蒋 俊、李亚丽、许高杰、崔 平、吴 汀、陈立东、王 刚 2007 物理学报 56 2858]

    [7]

    Sokolov O B, Skipidarov S Y, Duvankov N I 2000 J.Crystal Growth 236 181

    [8]

    Ettenberg M H, Maddux J R, Taylor P J, Jesser W A, Rosi F D 1997 J. Crystal Growth 179 495

    [9]

    Jiang J, Chen L D, Yao Q, Bai S Q, Wang Q 2005 Mater. Chem. Phys. 92 39

    [10]

    Jiang J, Chen L D, Yao Q, Bai S Q, Wang Q 2005 J. Crystal Growth 277 258

    [11]

    Qian J F, Yang C J 2005 Chinese Journal of Power Sources 29 459 (in Chinese) [钱剑锋、杨灿军 2005 电源技术 29 459]

    [12]

    Sun W, Hu P, Chen Z S, Jia L 2005 Acta Energ. Solar. Sin. 26 722 (in Chinese) [孙 炜、胡 芃、陈则韶、贾 磊 2005 太阳能学报 26 722]

    [13]

    Liu E K, Zhu B S, Luo J S 1997 Semiconductor Physics (Beijing: National Defence Industry Press) p86 (in Chinese) [刘恩科、朱秉生、罗晋生 1997 半导体物理学(北京:国防工业出版社)第86页]

    [14]

    Gao M, Zhang J S 1996 Thermoelectricity Changes and Their Applications (Beijing: Publishing House of Ordnance Industry) p32 (in Chinese) [高 敏、张景韶 1996温差电转换及其应用(北京:兵器工业出版社) 第32页]

    [15]

    K Uemura, I Nishida 1988 Thermoelectric Semiconductors and Their Applications (Tokyo: Nikkan-Kogyo Shinbun Press) p145

    [16]

    Lü Q, Rong J Y, Zhao L, Zhang H C, Hu J M, Xin J B 2005 Acta Phys. Sin. 54 3321 (in Chinese) [吕 强、荣剑英、赵 磊、张红晨、胡建民、信江波 2005 物理学报 54 3321]

  • [1] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [2] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [5] 李彩云, 何文科, 王东洋, 张潇, 赵立东. 通过插层Cu实现SnSe2的高效热电性能. 物理学报, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [6] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [7] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [8] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [9] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [10] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [11] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [12] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [14] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响. 物理学报, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [15] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [16] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [17] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [18] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] 蒋 俊, 李亚丽, 许高杰, 崔 平, 吴 汀, 陈立东, 王 刚. 制备工艺对p型碲化铋基合金热电性能的影响. 物理学报, 2007, 56(5): 2858-2862. doi: 10.7498/aps.56.2858
    [20] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
计量
  • 文章访问数:  6012
  • PDF下载量:  1055
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-11
  • 修回日期:  2010-06-03
  • 刊出日期:  2010-05-05

Bi2Te3 合金低温热电性能及冷能发电研究

  • 1. (1)中国科学院理化技术研究所低温工程学重点实验室,北京 100190; (2)中国科学院理化技术研究所低温工程学重点实验室,北京 100190,中国科学院研究生院,北京 100190
    基金项目: 国家自然科学基金(批准号:50802101,10904153)资助的课题.

摘要: 利用机械合金化和冷压烧结法制备得到n型和p型Bi2Te3基热电材料,在80—300 K温度范围测量了电导率、Seebeck系数,结果表明其具有良好的低温热电性能.采用Bi2Te3基热电材料制备出半导体热电器件,并配合附属设备搭建出一套半导体温差发电装置.利用液氮汽化时释放的冷能,对半导体热电器件的发电性能进行实验研究,得出这种半导体热电器件输出电压、输出功率与电流关系式,测得最大的输出功率达到1.33 W,从而证明了冷

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回