搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnSe/BeTe Ⅱ型量子阱中界面结构对发光特性的影响

冀子武 郑雨军 徐现刚 鲁云

引用本文:
Citation:

ZnSe/BeTe Ⅱ型量子阱中界面结构对发光特性的影响

冀子武, 郑雨军, 徐现刚, 鲁云

Interface structure effects on optical property of undoped ZnSe/BeTe type-Ⅱ quantum wells

Zheng Yu-Jun, Xu Xian-Gang, Ji Zi-Wu, Lu Yun
PDF
导出引用
  • 报道了具有特殊界面结构(界面包含三个Zn—Te或Te—Zn化学键)的非掺杂ZnSe/BeTe II 型量子阱在低温(5—10 K)条件下的空间间接光致发光(PL)光谱的实验结果. PL光谱显示了一个较弱的双峰结构和较低的线性偏振度,并且这两个峰的线性偏振度相反. 此外,这个PL光谱也强烈地依赖于一个外加电场的变化. 这些结果表明样品的两个发光峰是分别来自两个界面的发光跃迁,并且特殊界面结构降低了空间间接PL的发光效率和线性偏振性,以及界面附近的内秉电场. 随着激发强度的增加,PL谱的高能端发光峰显示了一个
    The results are reported of the spatially indirect photoluminescence (PL) spectrum measurements performed on undoped ZnSe/BeTe type-Ⅱ quantum wells with special interface structures at low temperatures (5—10 K). The PL spectra have two main peaks that show a weak PL intensity and a low linear polarization degree and that their linear polarizations are contrary to each other, And the PL spectra are strikingly dependent on an applied external electric field perpendicular to the layers. The results show that the special interface structures reduce spatially indirect radiative recombination efficiency and linear polarization degree, and that a weak built-in electric field exists in the heterostructure. With the increase of excitation intensity, the PL peak on high energy side shows a rapid increase. This is explained by the formation of high charge density on both sides of the high energy side interface.
    • 基金项目: 国家自然科学基金 (批准号:10844003,10874101),山东省自然科学基金(批准号:Y2008A10),国家重点基础研究发展计划(批准号:2009CB930503)资助的课题.
    [1]

    Xing Y H, Han J, Liu J P, Deng J, Niu N H, Shen G D 2007 Acta Phys. Sin. 56 7295 (in Chinese ) [刑艳辉、韩 军、刘建平、邓 军、牛南辉、沈光地 2007 物理学报 56 7295]

    [2]

    Ji Z W, Mino H, Oto K, Muro K, Akimoto R, Takeyama S 2008 Acta Phys. Sin. 57 6609 (in Chinese)[冀子武、三野弘文、音贤一、室清文、秋本良一、嶽山正二郎 2008 物理学报 57 6609]

    [3]

    Waag A, Fisher F, Lugauer H J 1996 J. Appl. Phys. 80 792

    [4]

    Yakovlev D R, Ivchenko E L 2000 Phys. Rev. B 61 2421

    [5]

    Ji Z W, Lu Y, Chen J X, Mino H, Akimoto R, Takeyama S 2008 Acta Phys. Sin. 57 1214 (in Chinese)[冀子武、鲁 云、陈锦祥、三野弘文、秋本良一、嶽山正二郎 2008 物理学报 57 1214]

    [6]

    Ji Z W, Mino H, Kojima E, Akimoto R, Takeyama S 2008 Acta Phys. Sin. 57 3260 (in Chinese )[冀子武、三野弘文、小映二、秋本良一、嶽山正二郎 2008 物理学报 57 3260]

    [7]

    Maksimov A A, Zaitsev S V, Tartakovskii I I, Kulakovskii V D, Gippius N A, Yakovlev D R, Ossau W, Euscher G, Waag A, Landwehr G 2000 Phys. Status Solidi B 221 523

    [8]

    Zaitsev S V, Maksimov A A, Kulakovskii V D, Tartakovskii I I, Yakovlev D R, Ossau W, Hansen L, Landwehr G, Waag A 2002 J. Appl. Phys. 91 652

    [9]

    Butov L V, Filin A I 1998 Phys. Rev. B 58 1980

    [10]

    Mino H, Fujikawa A, Akimoto R, Takeyama S 2004 Physica E 22 640

    [11]

    Ji Z W, Takeyama S, Mino H, Oto K, Muro K, Akimoto R 2008 Appl. Phys. Lett. 92 093107

    [12]

    Ji Z W, Mino H, Oto K, Akimoto R 2009 Semicond. Sci. Technol. 24 095016

    [13]

    Mino H, Ji Z W, Kano A. Oto K, Muro K, Akimoto R, Takeyama S 2006 J. Phys: Conf. Seri. 51 399

    [14]

    Ji Z W, Mino H, Oto K, Akimoto R, Ono K, Takeyama S 2006 Semicond. Sci. Technol. 21 87

    [15]

    Ji Z W, Yamamoto H, Mino H, Akimoto R, Takeyama S 2004 Physica E 22 632

    [16]

    Yakovlev D R, Platonov A V, Ivchenko E L, Kochereshko V P, Sas C, Ossau W, Hansen L, Waag A, Landwehr G, Molenkamp L W 2002 Phys..Rev. Lett. 88 257401

    [17]

    Skolnick M S, Rorison J M, Nash K J, Mowbray D J, Tapster P R, Bass S J, Pitt A D 1987 Phys. Rev. Lett. 58 2130

  • [1]

    Xing Y H, Han J, Liu J P, Deng J, Niu N H, Shen G D 2007 Acta Phys. Sin. 56 7295 (in Chinese ) [刑艳辉、韩 军、刘建平、邓 军、牛南辉、沈光地 2007 物理学报 56 7295]

    [2]

    Ji Z W, Mino H, Oto K, Muro K, Akimoto R, Takeyama S 2008 Acta Phys. Sin. 57 6609 (in Chinese)[冀子武、三野弘文、音贤一、室清文、秋本良一、嶽山正二郎 2008 物理学报 57 6609]

    [3]

    Waag A, Fisher F, Lugauer H J 1996 J. Appl. Phys. 80 792

    [4]

    Yakovlev D R, Ivchenko E L 2000 Phys. Rev. B 61 2421

    [5]

    Ji Z W, Lu Y, Chen J X, Mino H, Akimoto R, Takeyama S 2008 Acta Phys. Sin. 57 1214 (in Chinese)[冀子武、鲁 云、陈锦祥、三野弘文、秋本良一、嶽山正二郎 2008 物理学报 57 1214]

    [6]

    Ji Z W, Mino H, Kojima E, Akimoto R, Takeyama S 2008 Acta Phys. Sin. 57 3260 (in Chinese )[冀子武、三野弘文、小映二、秋本良一、嶽山正二郎 2008 物理学报 57 3260]

    [7]

    Maksimov A A, Zaitsev S V, Tartakovskii I I, Kulakovskii V D, Gippius N A, Yakovlev D R, Ossau W, Euscher G, Waag A, Landwehr G 2000 Phys. Status Solidi B 221 523

    [8]

    Zaitsev S V, Maksimov A A, Kulakovskii V D, Tartakovskii I I, Yakovlev D R, Ossau W, Hansen L, Landwehr G, Waag A 2002 J. Appl. Phys. 91 652

    [9]

    Butov L V, Filin A I 1998 Phys. Rev. B 58 1980

    [10]

    Mino H, Fujikawa A, Akimoto R, Takeyama S 2004 Physica E 22 640

    [11]

    Ji Z W, Takeyama S, Mino H, Oto K, Muro K, Akimoto R 2008 Appl. Phys. Lett. 92 093107

    [12]

    Ji Z W, Mino H, Oto K, Akimoto R 2009 Semicond. Sci. Technol. 24 095016

    [13]

    Mino H, Ji Z W, Kano A. Oto K, Muro K, Akimoto R, Takeyama S 2006 J. Phys: Conf. Seri. 51 399

    [14]

    Ji Z W, Mino H, Oto K, Akimoto R, Ono K, Takeyama S 2006 Semicond. Sci. Technol. 21 87

    [15]

    Ji Z W, Yamamoto H, Mino H, Akimoto R, Takeyama S 2004 Physica E 22 632

    [16]

    Yakovlev D R, Platonov A V, Ivchenko E L, Kochereshko V P, Sas C, Ossau W, Hansen L, Waag A, Landwehr G, Molenkamp L W 2002 Phys..Rev. Lett. 88 257401

    [17]

    Skolnick M S, Rorison J M, Nash K J, Mowbray D J, Tapster P R, Bass S J, Pitt A D 1987 Phys. Rev. Lett. 58 2130

  • [1] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [2] 拱越, 谷林. 全固态电池中界面的结构演化和物质输运. 物理学报, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [3] 王强, 杨立学, 刘北云, 闫胤洲, 陈飞, 蒋毅坚. 本征富受主型ZnO微米管光致发光的温度调控机制. 物理学报, 2020, 69(19): 197701. doi: 10.7498/aps.69.20200655
    [4] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [5] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [6] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [7] 刘智, 李亚明, 薛春来, 成步文, 王启明. 掺杂对多层Ge/Si(001)量子点光致发光的影响. 物理学报, 2013, 62(7): 076108. doi: 10.7498/aps.62.076108
    [8] 廖武刚, 曾祥斌, 文国知, 曹陈晨, 马昆鹏, 郑雅娟. 包含硅量子点的富硅SiNx 薄膜结构与发光特性. 物理学报, 2013, 62(12): 126801. doi: 10.7498/aps.62.126801
    [9] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [10] 冀子武, 郑雨军, 徐现刚. 超强磁场下非掺杂ZnSe/BeTe Ⅱ型量子阱中激子和带电激子的光学特性. 物理学报, 2011, 60(4): 047805. doi: 10.7498/aps.60.047805
    [11] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [12] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [13] 冀子武, 鲁 云, 陈锦祥, 三野弘文, 秋本良一, 嶽山正二郎. 调制掺杂ZnSe/BeTe Ⅱ型量子阱结构中的内秉电场和新型带电激子. 物理学报, 2008, 57(2): 1214-1219. doi: 10.7498/aps.57.1214
    [14] 冀子武, 三野弘文, 音贤一, 室清文, 秋本良一, 嶽山正二郎. 掺杂ZnSe/BeTe Ⅱ型量子阱结构中带电激子的磁场效应. 物理学报, 2008, 57(10): 6609-6613. doi: 10.7498/aps.57.6609
    [15] 冀子武, 三野弘文, 小嵨映二, 秋本良一, 嶽山正二郎. 调制n型掺杂ZnSe/BeTe Ⅱ型量子阱结构的发光特性. 物理学报, 2008, 57(5): 3260-3266. doi: 10.7498/aps.57.3260
    [16] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [17] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [18] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究. 物理学报, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [19] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [20] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
计量
  • 文章访问数:  6618
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-09
  • 修回日期:  2010-02-22
  • 刊出日期:  2010-11-15

/

返回文章
返回