搜索

x
中国物理学会期刊

一维双组分玻色-爱因斯坦凝聚体系的量子隧穿特性

CSTR: 32037.14.aps.59.1449

One-dimensional tunneling dynamics between two-component Bose-Einstein condensates

CSTR: 32037.14.aps.59.1449
PDF
导出引用
  • 利用双模近似方法研究了一维双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensates,BECs)的量子隧穿特性.从描述三维双组分BECs系统的Gross-Pitaevskii方程(GPE)出发,得到了描述一维体系的GP方程.把体系波函数写成原子数和相位指数的乘积,得到描述体系隧穿特性的费曼方程.数值求解费曼方程,研究了原子之间相互作用(双组分BECs体系原子之间的相互作用包括组分内部原子之间的相互作用和不同组分原子之间的相互作用)对隧穿特性的影响.结果显示,当原子之间的相互作用较弱时,

     

    One-dimensional quantum tunneling dynamics between two-component Bose-Einstein condensates confined in a double-well magnetic trap is investigated. One-dimensional Gross-Pitaevskii equations for two-component Bose-Einstein condensates are derived from the three-dimensional ones. We derive Feynman equations from one-dimensional Gross-Pitaevskii equations. To study tunneling dynamics we solve Feynman equations in terms of a completely numerical procedure. In contrast to single-component condensates between two-component condensates, we find that this system can take on abundant tunneling results, the full tunneling dynamical behavior is summarized in phase portrait with constant energy lines. It is found that this system can achieve self-trapping when increase interatomic interactions exceed a critical value. We give the analytical critical expressions of interatomic interactions from the system Hamiltonian.

     

    目录

    /

    返回文章
    返回