搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机分布烟尘团簇粒子辐射特性研究

类成新 吴振森

引用本文:
Citation:

随机分布烟尘团簇粒子辐射特性研究

类成新, 吴振森

A study of radiative properties of randomly distributed soot aggregates

Lei Cheng-Xin, Wu Zhen-Sen
PDF
导出引用
  • 基于分形理论,采用蒙特卡罗方法对随机分布的烟尘团簇粒子结构进行了仿真模拟,利用离散偶极子近似(discrete dipole approximation, DDA)方法研究了随机分布的烟尘团簇粒子的辐射特性,分析讨论了分形维数、原始微粒粒径和数量以及复折射率对随机分布烟尘团簇粒子辐射特性的影响.研究表明,在给定分形维数的情况下,烟尘团簇粒子的辐射特性取决于原始微粒粒径、数量及复折射率;原始微粒较小的团簇粒子,当分形维数较小时,吸收截面变化不明显,但当分形维数大于2时,吸收截面骤然增大,然而,对于具有比较大的原始微粒粒径、数量及复折射率的烟尘团簇粒子,吸收截面随着分形维数的增大而单调递减;随着分形维数的增大,团簇粒子的散射截面、消光截面及单次散射反照率均单调递增;从整体上来讲,团簇粒子的辐射特性与等效球形粒子的辐射特性存在着比较大的差别,并且这种差别随着分形维数的增大而减小.该工作对研究气溶胶粒子的辐射及气候效应具有重要的科学价值.
    Based on fractal theory, the Monte Carlo method is used to simulate the structures of fractal soot aggegates in random distribution. The radiative properties of randomly distributed soot aggregates are studied using the discrete dipole approximation (DDA), and the effects of the fractal dimension ,the monomer diameters , the number of monomers in the soot aggregates and the refractive index on the radiative properties of aggregated soot particles are analyzed. The results show that the radiative properties of randomly distributed soot aggregates of a given fractal dimension are complex functions of the monomer diameters, the number of monomers in the aggregates,and the refractive index. For small values of the monomer diameters, the absorption cross section of soot aggregates tends to be relatively constant when the fractal dimension is small, but increases rapidly when the fractal dimension exceeds two. However, a monotonical reduction in light absorption with the increase of the fractal dimension is observed for soot aggregates with sufficiently large monomer diameters, number of monomers,and refractive index. The scattering cross section , extinction cross section and single-scattering albedo increase monotonically with the increase of the fractal dimension. In a word, the results for soot aggregates differ profoundly from those calculated for the equivalent spherical particles, and the discrepancies between them change litte with the increase of the fractal dimension.This research is of scientific value in studying the radiative properties of aerosols and their climatic effects.
    • 基金项目: 国家自然科学基金(批准号:60371020)资助的课题.
    [1]

    HayWood J M, Roberts D L, Slingo A, Edwards J M, Shine K P 1997 J. Climate 10 1562

    [2]

    Schult I, Cooke W F, Feichter J 1997 Journal of Geophysical Research 102 107

    [3]

    Menon S, Hansen J, Nazarenko L, Luo Y F 2002 Science 297 2250

    [4]

    Purcell E M, Pennypacker C R 1973 Astrophys. J. 186 705

    [5]

    Draine B T 1988 Astrophys. J. 333 848

    [6]

    Draine B T, Flatau P J 1994 Journal of the Optical Society of America A 11 1491

    [7]

    Dobbins R A , Megaridis C M 1987 Langmuir 3 254

    [8]

    Jullien R, Botet R 1987 Aggregation and Fractal Aggregates(Singapore: World Scientific Publishing ) p46

    [9]

    Mulholland G W, Bohren C F, Fuller K A 1994 Langmuir 10 2533

    [10]

    Liu L, Mishchenko M I 2007 Journal of Quantitative Spectroscopy and Radiative Tansfer 106 262

    [11]

    Lei C X, Zhang H F, Liu H F 2009 Acta Phys. Sin. 58 7168 (in Chinese) [类成新、张化福、刘汉法 2009 物理学报 58 7168]

    [12]

    d'Almeida G A, Koepke P, Shettle E P 1991 Atmospheric Aerosols:Global Climatology and Radiative Characteristics (Virginia: Hampton A Deepak) p291

    [13]

    Fuller K A, Malm W C, Kreidenweis S M 1999 J. Geophys. Res.104 15941

  • [1]

    HayWood J M, Roberts D L, Slingo A, Edwards J M, Shine K P 1997 J. Climate 10 1562

    [2]

    Schult I, Cooke W F, Feichter J 1997 Journal of Geophysical Research 102 107

    [3]

    Menon S, Hansen J, Nazarenko L, Luo Y F 2002 Science 297 2250

    [4]

    Purcell E M, Pennypacker C R 1973 Astrophys. J. 186 705

    [5]

    Draine B T 1988 Astrophys. J. 333 848

    [6]

    Draine B T, Flatau P J 1994 Journal of the Optical Society of America A 11 1491

    [7]

    Dobbins R A , Megaridis C M 1987 Langmuir 3 254

    [8]

    Jullien R, Botet R 1987 Aggregation and Fractal Aggregates(Singapore: World Scientific Publishing ) p46

    [9]

    Mulholland G W, Bohren C F, Fuller K A 1994 Langmuir 10 2533

    [10]

    Liu L, Mishchenko M I 2007 Journal of Quantitative Spectroscopy and Radiative Tansfer 106 262

    [11]

    Lei C X, Zhang H F, Liu H F 2009 Acta Phys. Sin. 58 7168 (in Chinese) [类成新、张化福、刘汉法 2009 物理学报 58 7168]

    [12]

    d'Almeida G A, Koepke P, Shettle E P 1991 Atmospheric Aerosols:Global Climatology and Radiative Characteristics (Virginia: Hampton A Deepak) p291

    [13]

    Fuller K A, Malm W C, Kreidenweis S M 1999 J. Geophys. Res.104 15941

  • [1] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [2] 许育培, 李树. 球几何中辐射源粒子抽样方法的改进. 物理学报, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [3] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法. 物理学报, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [4] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [5] 郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣. 超声喷流氩氢混合团簇特性研究. 物理学报, 2014, 63(10): 103601. doi: 10.7498/aps.63.103601
    [6] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [7] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究. 物理学报, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [8] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [9] 王慧琴, 方利广, 王一凡, 余奥列. 光子晶体晶粒尺寸和排列结构对随机激光辐射特性的影响. 物理学报, 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [10] 类成新, 冯东太, 吴振森. 掺杂对随机分布团簇粒子缪勒矩阵的影响. 物理学报, 2011, 60(11): 115202. doi: 10.7498/aps.60.115202
    [11] 类成新, 张化福, 刘汉法. 随机分布烟尘簇团粒子缪勒矩阵的数值计算. 物理学报, 2009, 58(10): 7168-7175. doi: 10.7498/aps.58.7168
    [12] 王慧琴, 刘正东. 光子晶体对非晶纳米团簇辐射特性的影响. 物理学报, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [13] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法. 物理学报, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [14] 王 磊, 吴玉迟, 王红斌, 刘红杰, 葛芳芳, 陈家斌, 郑志坚, 谷渝秋, 史叔廷, 罗小兵, 杨朝文. 低温高背压氘团簇源特性研究. 物理学报, 2007, 56(12): 6918-6923. doi: 10.7498/aps.56.6918
    [15] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [16] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [17] 韩增富, 王均宏. 并联介质加载偶极天线脉冲辐射特性的研究. 物理学报, 2005, 54(2): 642-647. doi: 10.7498/aps.54.642
    [18] 毛华平, 马美仲. Aun(n=2—9)团簇的几何结构和电子特性. 物理学报, 2004, 53(6): 1766-1771. doi: 10.7498/aps.53.1766
    [19] 程元丽, 赵永蓬, 肖亦凡, 夏元钦, 陈建新, 王 骐. 氩团簇高信噪比13—23nm软x射线辐射谱实验观察. 物理学报, 2003, 52(10): 2453-2456. doi: 10.7498/aps.52.2453
    [20] 王培录, 刘仲阳, 郑思孝, 廖小东, 杨朝文, 唐阿友, 师勉恭, 杨百方, 缪竞威. 氮原子、分子与团簇离子注入Si(111)的特性研究. 物理学报, 2001, 50(5): 860-864. doi: 10.7498/aps.50.860
计量
  • 文章访问数:  5821
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-22
  • 修回日期:  2009-12-21
  • 刊出日期:  2010-04-05

随机分布烟尘团簇粒子辐射特性研究

  • 1. (1)山东理工大学理学院,淄博 255049; (2)西安电子科技大学理学院,西安 710071
    基金项目: 国家自然科学基金(批准号:60371020)资助的课题.

摘要: 基于分形理论,采用蒙特卡罗方法对随机分布的烟尘团簇粒子结构进行了仿真模拟,利用离散偶极子近似(discrete dipole approximation, DDA)方法研究了随机分布的烟尘团簇粒子的辐射特性,分析讨论了分形维数、原始微粒粒径和数量以及复折射率对随机分布烟尘团簇粒子辐射特性的影响.研究表明,在给定分形维数的情况下,烟尘团簇粒子的辐射特性取决于原始微粒粒径、数量及复折射率;原始微粒较小的团簇粒子,当分形维数较小时,吸收截面变化不明显,但当分形维数大于2时,吸收截面骤然增大,然而,对于具有比较大的原始微粒粒径、数量及复折射率的烟尘团簇粒子,吸收截面随着分形维数的增大而单调递减;随着分形维数的增大,团簇粒子的散射截面、消光截面及单次散射反照率均单调递增;从整体上来讲,团簇粒子的辐射特性与等效球形粒子的辐射特性存在着比较大的差别,并且这种差别随着分形维数的增大而减小.该工作对研究气溶胶粒子的辐射及气候效应具有重要的科学价值.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回