搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌

宋立军 严冬 刘烨

引用本文:
Citation:

玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌

宋立军, 严冬, 刘烨

Quantum Fisher information and chaos in the system of Bose-Einstein condensate

Song Li-Jun, Yan Dong, Liu Yie
PDF
导出引用
  • 量子Fisher信息作为经典Fisher信息的自然推广,与量子信息中的纠缠判断具有密切联系.在表现为典型量子混沌特征的受击两分量玻色-爱因斯坦凝聚系统中,研究了与经典相空间对应的纠缠和量子Fisher信息动力学性质. 结果表明,初次撞击后的系统量子态是纠缠的,与初态所处相空间中的混乱程度无关.而量子Fisher信息的动力学演化对系统初态非常敏感,当初态处于混沌区域时,量子Fisher信息值比初态处于规则区域时大.利用这种较好的量子-经典对应关系,得到量子Fisher信息可以刻画量子混沌的结论.
    Quantum Fisher information,derived from the classical Fisher information, is closely related to the quantum entanglement in quantum information. The entanglement and the quantum information which are both associated with the classical phase space are investigated in a two-component Bose-Einstein condensate impacted by the impulses. The results reveal that the states regardless of disorder of the phase space after the first impulse are entangled. However, the quantum information is very sensitive to the state centred in the classical phase space, concretely, the value of the quantum information centred in the chaotic region is greater than in the regular region. By employing the good quantum-classical correspondence, we conclude that the quantum information can serve as a signature of the quantum chaos.
    • 基金项目: 国家自然科学基金(批准号:10947019)、教育部科学技术研究计划重点项目(批准号:211040)、吉林省自然科学基金(批准号:20101514)资助的课题.
    [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]
    [3]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]
    [5]

    Smerzi A, Fantoni S 1997 Phys. Rev. Lett. 78 3589

    [6]
    [7]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese) [王冠芳、傅立斌、赵 鸿、刘 杰 2005 物理学报 54 5003]

    [8]
    [9]

    Zhang C W, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 93 074101

    [10]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [11]
    [12]

    Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 661 (in Chinese) [房永翠、杨志安、杨丽云 2008 物理学报 57 661]

    [13]
    [14]
    [15]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [16]

    Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [17]
    [18]
    [19]

    Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [20]
    [21]

    Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [22]

    Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209

    [23]
    [24]
    [25]

    Zhang Y J, Xia Y J, Ren T Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 722 (in Chinese) [张英杰、夏云杰、任延琦、杜秀梅、刘玉玲 2009 物理学报 58 722]

    [26]
    [27]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) [郭 亮、梁先庭2009 物理学报 58 50]

    [28]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英、吴 炜 2009 物理学报 58 5311]

    [29]
    [30]
    [31]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2006 Phys. Lett. A 353 216

    [32]

    Gorin T, Prosen T, Seligman T H, Znidaric M 2006 Phys. Rep. 435 33

    [33]
    [34]

    Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B 39 559

    [35]
    [36]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [37]
    [38]
    [39]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严 冬、宋立军、陈殿伟 2009 物理学报 58 3679]

    [40]

    Pezz L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [41]
    [42]

    Haake F 1991 Quantum Signature of Chaos (Berlin: Springer)

    [43]
    [44]
    [45]

    Hall M J W 2000 Phys. Rev. A 62 012107

    [46]

    Weiss C, Teichmann N 2009 J. Phys. B 42 031001

    [47]
    [48]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)

    [49]
    [50]

    Wineland D J, Bollinger J J, Itano W M, Moore F L, Heinzen D J 1992 Phys. Rev. A 46 R6797

    [51]
  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]
    [3]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]
    [5]

    Smerzi A, Fantoni S 1997 Phys. Rev. Lett. 78 3589

    [6]
    [7]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese) [王冠芳、傅立斌、赵 鸿、刘 杰 2005 物理学报 54 5003]

    [8]
    [9]

    Zhang C W, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 93 074101

    [10]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [11]
    [12]

    Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 661 (in Chinese) [房永翠、杨志安、杨丽云 2008 物理学报 57 661]

    [13]
    [14]
    [15]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [16]

    Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [17]
    [18]
    [19]

    Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [20]
    [21]

    Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [22]

    Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209

    [23]
    [24]
    [25]

    Zhang Y J, Xia Y J, Ren T Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 722 (in Chinese) [张英杰、夏云杰、任延琦、杜秀梅、刘玉玲 2009 物理学报 58 722]

    [26]
    [27]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) [郭 亮、梁先庭2009 物理学报 58 50]

    [28]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英、吴 炜 2009 物理学报 58 5311]

    [29]
    [30]
    [31]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2006 Phys. Lett. A 353 216

    [32]

    Gorin T, Prosen T, Seligman T H, Znidaric M 2006 Phys. Rep. 435 33

    [33]
    [34]

    Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B 39 559

    [35]
    [36]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [37]
    [38]
    [39]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严 冬、宋立军、陈殿伟 2009 物理学报 58 3679]

    [40]

    Pezz L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [41]
    [42]

    Haake F 1991 Quantum Signature of Chaos (Berlin: Springer)

    [43]
    [44]
    [45]

    Hall M J W 2000 Phys. Rev. A 62 012107

    [46]

    Weiss C, Teichmann N 2009 J. Phys. B 42 031001

    [47]
    [48]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)

    [49]
    [50]

    Wineland D J, Bollinger J J, Itano W M, Moore F L, Heinzen D J 1992 Phys. Rev. A 46 R6797

    [51]
  • [1] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [2] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [3] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [4] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [5] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [6] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [7] 辛俊丽, 沈俊霞. 谐振子系统的量子-经典轨道、Berry相及Hannay角. 物理学报, 2015, 64(24): 240302. doi: 10.7498/aps.64.240302
    [8] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [9] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [10] 赵文垒, 豆福全, 王建忠. 玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响 . 物理学报, 2012, 61(22): 220503. doi: 10.7498/aps.61.220503
    [11] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应 . 物理学报, 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [12] 李飞, 张冬霞, 李文斌. 玻色-爱因斯坦凝聚系统中原子的空间混沌分布. 物理学报, 2011, 60(12): 120304. doi: 10.7498/aps.60.120304
    [13] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系. 物理学报, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [14] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性. 物理学报, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [15] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [16] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [17] 房永翠, 杨志安. 玻色-爱因斯坦凝聚体系中的混沌隧穿行为. 物理学报, 2008, 57(12): 7438-7446. doi: 10.7498/aps.57.7438
    [18] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [19] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示. 物理学报, 2008, 57(2): 661-666. doi: 10.7498/aps.57.661
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  4908
  • PDF下载量:  8708
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-28
  • 修回日期:  2011-06-15
  • 刊出日期:  2011-06-05

玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌

  • 1. 长春大学理学院,长春 130022;
  • 2. 长春理工大学理学院,长春 130022
    基金项目: 国家自然科学基金(批准号:10947019)、教育部科学技术研究计划重点项目(批准号:211040)、吉林省自然科学基金(批准号:20101514)资助的课题.

摘要: 量子Fisher信息作为经典Fisher信息的自然推广,与量子信息中的纠缠判断具有密切联系.在表现为典型量子混沌特征的受击两分量玻色-爱因斯坦凝聚系统中,研究了与经典相空间对应的纠缠和量子Fisher信息动力学性质. 结果表明,初次撞击后的系统量子态是纠缠的,与初态所处相空间中的混乱程度无关.而量子Fisher信息的动力学演化对系统初态非常敏感,当初态处于混沌区域时,量子Fisher信息值比初态处于规则区域时大.利用这种较好的量子-经典对应关系,得到量子Fisher信息可以刻画量子混沌的结论.

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回