搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁几何阻挫材料羟基氯化钴的中红外光谱特征

刘晓东 陶万军 郑旭光 萩原雅人 孟冬冬 张森林 郭其新

引用本文:
Citation:

磁几何阻挫材料羟基氯化钴的中红外光谱特征

刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新

Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides

Liu Xiao-Dong, Tao Wan-Jun, Hagihala Masato, Guo Qi-Xin, Meng Dong-Dong, Zhang Sen-Lin, Zheng Xu-Guang
PDF
导出引用
  • 使用3种光谱仪测量了磁几何阻挫材料羟基氯化钴Co2(OH)3Cl的中红外(4000—400 cm-1)吸收光谱,筛选出确信为Co2(OH)3Cl的本征吸收峰数据,结合已知的晶体结构参数,指认了官能团和指纹区相应谱峰的来源.在指认中着重探讨了羟基伸缩振动基频模vOH的具体实验数据,根据固体中氢键的特点,以Co3—O平均距离为基准,推算了本样品
    Three types of FTIR spectrometers were employed to measure the mid-infrared (4000—400 cm-1) absorption spectra of geometrically frustrated hydroxyl cobalt chloride Co2(OH)3Cl, and the intrinsic absorption peaks in the functional group region and fingerprint region were selected and assigned to corresponding vibrational modes according to its known crystal structure. In the assigning process, great emphasis was laid on analyzing the exact experimental data of hydroxyl stretching vibration mode vOH, that is, estimating the free vOH of the Co3—OH group without any hydrogen bond (H-bond), to obtain the red-shift which reflects the formation of an H-band in Co2(OH)3Cl. A 156 cm-1 red-shift is obtained theoretically which demonstrates the presence of non-negligible weak H-bonds, and eventually result in the discovery of the rarely reported trimeric H-bond in the field of crystalline materials, which consists of three independent hydroxyl donors and only one Cl- acceptor. We explained the relative weakness of this kind of hydrogen bond which may have a critical effect on the lattice symmetry and magnetic structure.
    • 基金项目: 天津工业大学博士科研启动项目(批准号:20080033),日本学术振兴会科学研究项目(批准号:Kiban-B 19340100),日本文部省特定领域科学研究项目(批准号:Tokutei 22014008)资助的课题.
    [1]

    Zheng X G 2008 Prog. Phys. 28 314 (in Chinese) [郑旭光 2008 物理学进展 28 314]

    [2]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [3]

    Zheng X G, Otabe E S 2004 Solid State Commun. 130 107

    [4]

    Zheng X G, Xu C N 2004 Solid State Commun. 131 509

    [5]

    Zheng X G, Kawae T, Kashitani Y, Li C S, Tateiwa N, Takeda K, Yamada H, Xu C N, Ren Y 2005 Phys. Rev. B 71 052409

    [6]

    Zheng X G, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K, Xu C N 2005 Phys. Rev. B 71 174404

    [7]

    Zheng X G, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A, Xu C N 2005 Phys. Rev. Lett. 95 057201

    [8]

    Zheng X G, Yamashita T, Hagihala M, Fujihala M, Kawae T 2009 Physica B 404 680

    [9]

    Hagihala M, Zheng X G, Toriyi T, Kawae T 2007 J. Phys.: Condens. Matter 19 145281

    [10]

    Zheng X G, Hagihala M, Toriyi T 2007 J. Magn. Magn. Mater. 310 1288

    [11]

    Zheng X G, Kawae T, Yamada H, Nishiyama K, Xu C N 2006 Phys. Rev. Lett. 97 247204

    [12]

    Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 671

    [13]

    Fujihala M, Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 674

    [14]

    Kubo H, Zenmyo K, Tokita M, Hamasaki T, Hagihala M, Zheng X G 2008 J. Phys. Soc. Jpn. 77 013704

    [15]

    Tokita M and Zenmyo K 2009 J. Phys.: Conf. Series 150 042208

    [16]

    Zenmyo K, Tokita M 2009 J. Magn. Magn. Mater. 321 2192

    [17]

    Bi C Z, Ma J Y, Zhao B R, Tang Z, Yin D, Li C Z, Yao D Z, Shi J, Qiu X G 2005 J. Phys.: Condens. Matter 17 5225

    [18]

    Martens W, Frost R L, Williams P A 2003 N. Jb. Miner. Abh. 178 197

    [19]

    Zheng X G, Hagihala M, Fujihala M, Kawae T 2009 J. Phys.: Conf. Series. 145 012034

    [20]

    Ergun H B, Gehring K A, Gehring G A 1976 J. Phys.C: Solid State Phys. 9 1101

    [21]

    Jongenelis A P J M, van den Berg T H M, Schmidt J, van der Avoird A 1989 J. Phys.: Condens. Matter 1 5051

    [22]

    Lutz H D 1995 Struct. Bond. 82 85

    [23]

    Beckenkamp K, Lutz H D 1992 J. Mol. Struct. 270 393

    [24]

    Zwier T S 2004 Science 304 1119

    [25]

    Sun X Z, Li B, Zhou Q B, Zhang H B, Cheng G Z, Zhou X H 2008 Crystal Growth Design 8 2970

    [26]

    Mohti F 2006 J. Mol. Struct. THEO 770 179

    [27]

    Nakamoto K 2009 Infrared and Raman Spectra of inorganic and coordination compounds, Part A & B 2009 Sixth edition, John Wiley & Sons Inc.

    [28]

    Chen H J, Shi L H, Yan W B, Chen G F, Shen J, Li Y X 2009 Chin. Phys. B 18 2372

    [29]

    Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J, Jiang Y J 2010 Chin. Phys. B 19 037802

    [30]

    Hu D W, Wang Z P, Zhang H J, Xu X G, Wang J Y, Shao Z S 2008 Acta Phys. Sin. 57 1714 (in Chinese) [胡大伟、王正平、 张怀金、许心光、王继扬、邵宗书 2008 物理学报 57 1714]

    [31]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾、胡 明、张 伟、张绪瑞 2008 物理学报57 103]

    [32]

    Zhang X, Wan S M, Yin S T, You J L, Zhang R B 2009 Acta Phys. Sin. 58 373 (in Chinese)[张 霞、万松明、殷绍唐、尤静林、张荣波 2009 物理学报 58 373]

  • [1]

    Zheng X G 2008 Prog. Phys. 28 314 (in Chinese) [郑旭光 2008 物理学进展 28 314]

    [2]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [3]

    Zheng X G, Otabe E S 2004 Solid State Commun. 130 107

    [4]

    Zheng X G, Xu C N 2004 Solid State Commun. 131 509

    [5]

    Zheng X G, Kawae T, Kashitani Y, Li C S, Tateiwa N, Takeda K, Yamada H, Xu C N, Ren Y 2005 Phys. Rev. B 71 052409

    [6]

    Zheng X G, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K, Xu C N 2005 Phys. Rev. B 71 174404

    [7]

    Zheng X G, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A, Xu C N 2005 Phys. Rev. Lett. 95 057201

    [8]

    Zheng X G, Yamashita T, Hagihala M, Fujihala M, Kawae T 2009 Physica B 404 680

    [9]

    Hagihala M, Zheng X G, Toriyi T, Kawae T 2007 J. Phys.: Condens. Matter 19 145281

    [10]

    Zheng X G, Hagihala M, Toriyi T 2007 J. Magn. Magn. Mater. 310 1288

    [11]

    Zheng X G, Kawae T, Yamada H, Nishiyama K, Xu C N 2006 Phys. Rev. Lett. 97 247204

    [12]

    Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 671

    [13]

    Fujihala M, Hagihala M, Zheng X G, Kawae T 2009 Physica B 404 674

    [14]

    Kubo H, Zenmyo K, Tokita M, Hamasaki T, Hagihala M, Zheng X G 2008 J. Phys. Soc. Jpn. 77 013704

    [15]

    Tokita M and Zenmyo K 2009 J. Phys.: Conf. Series 150 042208

    [16]

    Zenmyo K, Tokita M 2009 J. Magn. Magn. Mater. 321 2192

    [17]

    Bi C Z, Ma J Y, Zhao B R, Tang Z, Yin D, Li C Z, Yao D Z, Shi J, Qiu X G 2005 J. Phys.: Condens. Matter 17 5225

    [18]

    Martens W, Frost R L, Williams P A 2003 N. Jb. Miner. Abh. 178 197

    [19]

    Zheng X G, Hagihala M, Fujihala M, Kawae T 2009 J. Phys.: Conf. Series. 145 012034

    [20]

    Ergun H B, Gehring K A, Gehring G A 1976 J. Phys.C: Solid State Phys. 9 1101

    [21]

    Jongenelis A P J M, van den Berg T H M, Schmidt J, van der Avoird A 1989 J. Phys.: Condens. Matter 1 5051

    [22]

    Lutz H D 1995 Struct. Bond. 82 85

    [23]

    Beckenkamp K, Lutz H D 1992 J. Mol. Struct. 270 393

    [24]

    Zwier T S 2004 Science 304 1119

    [25]

    Sun X Z, Li B, Zhou Q B, Zhang H B, Cheng G Z, Zhou X H 2008 Crystal Growth Design 8 2970

    [26]

    Mohti F 2006 J. Mol. Struct. THEO 770 179

    [27]

    Nakamoto K 2009 Infrared and Raman Spectra of inorganic and coordination compounds, Part A & B 2009 Sixth edition, John Wiley & Sons Inc.

    [28]

    Chen H J, Shi L H, Yan W B, Chen G F, Shen J, Li Y X 2009 Chin. Phys. B 18 2372

    [29]

    Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J, Jiang Y J 2010 Chin. Phys. B 19 037802

    [30]

    Hu D W, Wang Z P, Zhang H J, Xu X G, Wang J Y, Shao Z S 2008 Acta Phys. Sin. 57 1714 (in Chinese) [胡大伟、王正平、 张怀金、许心光、王继扬、邵宗书 2008 物理学报 57 1714]

    [31]

    Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾、胡 明、张 伟、张绪瑞 2008 物理学报57 103]

    [32]

    Zhang X, Wan S M, Yin S T, You J L, Zhang R B 2009 Acta Phys. Sin. 58 373 (in Chinese)[张 霞、万松明、殷绍唐、尤静林、张荣波 2009 物理学报 58 373]

  • [1] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 1-6. doi: 10.7498/aps.71.20220011
    [2] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [3] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [4] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [5] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [6] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [7] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [8] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [9] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究. 物理学报, 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [10] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [11] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [12] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱. 物理学报, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [13] 王小伍, 徐海红. 多元醇固—固相变机理的研究. 物理学报, 2011, 60(3): 030507. doi: 10.7498/aps.60.030507
    [14] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响. 物理学报, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [15] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [16] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [17] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 物理学报, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [18] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [19] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  6086
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-17
  • 修回日期:  2010-07-05
  • 刊出日期:  2011-03-15

磁几何阻挫材料羟基氯化钴的中红外光谱特征

  • 1. (1)天津工业大学理学院物理系,天津 300160; (2)佐贺大学理工学部电子与电气工程科和同步辐射光应用研究中心,佐贺 840-8502日本; (3)佐贺大学理工学部物理科学科,佐贺 840-8502日本
    基金项目: 天津工业大学博士科研启动项目(批准号:20080033),日本学术振兴会科学研究项目(批准号:Kiban-B 19340100),日本文部省特定领域科学研究项目(批准号:Tokutei 22014008)资助的课题.

摘要: 使用3种光谱仪测量了磁几何阻挫材料羟基氯化钴Co2(OH)3Cl的中红外(4000—400 cm-1)吸收光谱,筛选出确信为Co2(OH)3Cl的本征吸收峰数据,结合已知的晶体结构参数,指认了官能团和指纹区相应谱峰的来源.在指认中着重探讨了羟基伸缩振动基频模vOH的具体实验数据,根据固体中氢键的特点,以Co3—O平均距离为基准,推算了本样品

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回