搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锯齿型石墨烯纳米带的能带研究

王雪梅 刘红

引用本文:
Citation:

锯齿型石墨烯纳米带的能带研究

王雪梅, 刘红

Band structures of zigzag graphene nanoribbons

Wang Xue-Mei, Liu Hong
PDF
导出引用
  • 运用π电子紧束缚模型,具体研究了锯齿型石墨烯纳米带(ZGNRs)的边界结构对能带,特别是费米面附近的导带和价带电子的影响.计算了七种不同边界结构的ZGNRs的能带色散关系及费米面附近价带电子在原胞中各原子上的分布情况.计算结果表明:两边界都无悬挂原子的NN-ZGNRs,只有一边界有悬挂原子的DN-ZGNRs,两边界都有五边形环的SPP-ZGNRs和ASPP-ZGNRs为金属性.两边界都有悬挂原子的DD-ZGNRs,一边界为五边形环另一边界无悬挂原子的PN-ZGNRs和一边界为五边形环另一边界有悬挂原子的P
    Based on the π-electron tight-binding model, for zigzag graphene nanoribbons(ZGNRs) the influence of boundary structure on band structure, specially the electrons of the valence band and the conductor band near the Fermi level, are studied in detail. We investigate the band structures and the distributions of electrons of different atoms in a unit cell of the valence band near the Fermi level of ZGNRs with seven reasonable boundary structures. We find NN-ZGNRs with no dangling atoms on both edges, DN-ZGNRs with dangling atoms only on one edge, SPP-ZGNRs and ASPP-ZGNRs each with pentagons on both two edges and being metallic, DD-ZGNRs with dangling atoms on both two edges, PN-ZGNRs each with a defective structure of pentagons on one edge and no dangling atoms on the other edge, PD-ZGNRs with a pentagon on one edge and dangling atoms on the other edge being semiconducting, and the energy gap being inversely proportional to the width of nanoribbons. But for DD-ZGNRs and PD-ZGNRs, the energy gaps quickly reduce to zero with the increase of width; for PN-ZGNRs, the energy gaps decrease exponentially to a limited value of 0.154 eV. It is found that different boundary structures have different effects on the distribution of electrons in the valence band near the Fermi level. And the probability for electrons staying in the atoms on two edges of nanoribbons is relatively large.
    • 基金项目: 国家自然科学基金(批准号:10947004),江苏省自然科学基金(批准号:BK2008427),高校博士学科点专项基金(批准号:200803190004)资助的课题.
    [1]

    Novoselov K S , Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 110

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 195408

    [7]

    Westervelt R M 2008 Science 320 324

    [8]

    Matulis A, Peeters F M 2008 Phys. Rev. B 77 115423

    [9]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [10]

    Xu H Y, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [11]

    Sahu B, Min H, MacDonald A H, Banerjee1 S K 2008 Phys. Rev. B 78 045404

    [12]

    Castro E V, Peres N M R, Lopes dos Santos J M B, Castro Neto A H, Guinea F 2008 Phys. Rev. Lett. 100 026802

    [13]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞、童国平、蒋永进 2009 物理学报 58 8537]

    [14]

    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [15]

    Yang L, Cohen M L, Louie S G 2007 Nano Lett. 7 3112

    [16]

    Son Y W, Cohen M L, Louie S G 2006 Phys Rev. Lett. 97 216803

    [17]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [18]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [19]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [20]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [21]

    Rozhkov A V, Savel’ev S, Nori F 2009 Phys. Rev. B 79 125420

    [22]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [23]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [24]

    Han M Y, zyilmaz B, Zhang Y, Kim Philip 2007 Phys. Rev. Lett. 98 206805

    [25]

    Ouyang F P, Wang H Y, Li M J, Xiao J, Xu H 2008 Acta Phys. Sin. 57 7132 (in Chinese) [欧阳方平、王焕友、李明君、肖 金、徐 慧 2008 物理学报 57 7132]

    [26]

    Cresti A, Roche S 2009 Phys. Rev. B 79 233404

    [27]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Ho K M 2010 Phys. Rev. B 81 195419

    [28]

    Li Z Z 2002 Solid State Theory (2nd ed) (Beijing: Higher Education Press) p67 (in Chinese) [李正中 2002 固体理论(第二版)(北京:高等教育出版社)第67页]

    [29]

    Zheng X H, Dai Z X, Wang X L, Zeng Z 2009 Acta Phys. Sin. 58 S259 (in Chinese) [郑小宏、戴振翔、王贤龙、曾 雉 2009 物理学报 58 S259]

  • [1]

    Novoselov K S , Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 110

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 195408

    [7]

    Westervelt R M 2008 Science 320 324

    [8]

    Matulis A, Peeters F M 2008 Phys. Rev. B 77 115423

    [9]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [10]

    Xu H Y, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [11]

    Sahu B, Min H, MacDonald A H, Banerjee1 S K 2008 Phys. Rev. B 78 045404

    [12]

    Castro E V, Peres N M R, Lopes dos Santos J M B, Castro Neto A H, Guinea F 2008 Phys. Rev. Lett. 100 026802

    [13]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞、童国平、蒋永进 2009 物理学报 58 8537]

    [14]

    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [15]

    Yang L, Cohen M L, Louie S G 2007 Nano Lett. 7 3112

    [16]

    Son Y W, Cohen M L, Louie S G 2006 Phys Rev. Lett. 97 216803

    [17]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [18]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [19]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [20]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [21]

    Rozhkov A V, Savel’ev S, Nori F 2009 Phys. Rev. B 79 125420

    [22]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [23]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [24]

    Han M Y, zyilmaz B, Zhang Y, Kim Philip 2007 Phys. Rev. Lett. 98 206805

    [25]

    Ouyang F P, Wang H Y, Li M J, Xiao J, Xu H 2008 Acta Phys. Sin. 57 7132 (in Chinese) [欧阳方平、王焕友、李明君、肖 金、徐 慧 2008 物理学报 57 7132]

    [26]

    Cresti A, Roche S 2009 Phys. Rev. B 79 233404

    [27]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Ho K M 2010 Phys. Rev. B 81 195419

    [28]

    Li Z Z 2002 Solid State Theory (2nd ed) (Beijing: Higher Education Press) p67 (in Chinese) [李正中 2002 固体理论(第二版)(北京:高等教育出版社)第67页]

    [29]

    Zheng X H, Dai Z X, Wang X L, Zeng Z 2009 Acta Phys. Sin. 58 S259 (in Chinese) [郑小宏、戴振翔、王贤龙、曾 雉 2009 物理学报 58 S259]

  • [1] 马天慧, 雷作涛, 张晓萌, 付秋月, 布和巴特尔, 朱崇强, 杨春晖. 密度泛函理论研究ZnGeP2晶体中缺陷的稳定性及迁移机制. 物理学报, 2022, 71(22): 227101. doi: 10.7498/aps.71.20220610
    [2] 姜天舒, 肖孟, 张昭庆, 陈子亭. 周期与非周期传输线网络的物理与拓扑性质. 物理学报, 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [3] 梅宇涵, 邵越, 杭志宏. 基于紧束缚模型的拓扑物理微波实验验证平台的开发. 物理学报, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [4] 赵小强, 赵学童, 许超, 李巍巍, 任路路, 廖瑞金, 李建英. ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展. 物理学报, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [5] 夏俊明, 徐跃民, 孙越强, 霍文青, 孙海龙, 白伟华, 柳聪亮, 孟祥广. 电磁波在大面积等离子体片中传播特性的分析. 物理学报, 2015, 64(19): 194202. doi: 10.7498/aps.64.194202
    [6] 李龙, 王鸣, 倪海彬, 沈添怿. 采用溶胶凝胶协同自组装与光刻相结合的方法在反蛋白石结构薄膜中引入二维缺陷. 物理学报, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [7] 王辉, 蔺家骏, 何锦强, 廖永力, 李盛涛. 沉淀剂对ZnO压敏陶瓷缺陷结构和电气性能的影响. 物理学报, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [8] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [9] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [10] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态. 物理学报, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [11] 赵学童, 李建英, 李欢, 李盛涛. ZnO压敏陶瓷缺陷结构表征及冲击老化机理研究. 物理学报, 2012, 61(15): 153103. doi: 10.7498/aps.61.153103
    [12] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角. 非铁电压电复合陶瓷SrTiO3-Bi12TiO20 (ST-BT) 的正电子湮没谱学研究. 物理学报, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [13] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究. 物理学报, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [14] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [15] 岳廷, 何灏, 张星, 李广. La0.55Ca0.45MnO3的电子密度分布变温X射线衍射测量. 物理学报, 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [16] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
    [17] 陈 钦, 李统藏, 石勤伟, 王晓平. 开口悬挂端对单壁碳纳米管电子输运特性的影响. 物理学报, 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [18] 张纯祥, 林理彬, 唐 强, 罗达玲. α-Al2O3: Mn单晶的三维热释发光谱研究. 物理学报, 2004, 53(11): 3940-3944. doi: 10.7498/aps.53.3940
    [19] 邓文基. 希尔伯特空间中的概率流和概率守恒. 物理学报, 2001, 50(8): 1425-1428. doi: 10.7498/aps.50.1425
    [20] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察. 物理学报, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
计量
  • 文章访问数:  10134
  • PDF下载量:  2378
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-24
  • 修回日期:  2010-07-07
  • 刊出日期:  2011-02-05

/

返回文章
返回