搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无截断薄膜模型与Dirac场的黑洞熵

杨学军 赵峥

引用本文:
Citation:

无截断薄膜模型与Dirac场的黑洞熵

杨学军, 赵峥

The thin film model without cutoff and the black hole entropy of Dirac field

Zhao Zheng, Yang Xue-Jun
PDF
导出引用
  • 计算黑洞熵的砖墙模型被改进为薄膜模型后其物理思想更直接而明了,且突出了事件视界作为静态或稳态黑洞特征面的重要性.但为避免发散,薄膜模型同样需要引入紫外截断因子.截断因子的引入非常人为,至今没有给以合理的解释.有文献将广义不确定关系引入黑洞熵的计算而不需要任何截断便可避免发散.本文以静态球对称黑洞Dirac场的熵的计算为例,阐述了无截断薄膜模型及其与有截断薄膜模型的本质区别.
    The physical idea of thin film model improved from brick-wall model is more direct and clearer than brick-wall model and gives prominence to the significance of the event horizon serving as the characteristic surface of a static or stationary black hole. To remove the divergence of the density of states, an ultraviolet cutoff factor is also introduced into the thin film model. The cutoff is introduced artificially and it has not been understood clearly up to now. There is an indication in a reference that the divergence can be removed without any cutoff when the generalized uncertainty relation is used to calculate black hole entropy. In this paper, thin film model without cutoff and the essential difference between the thin film model without cutoff and the thin film model with cutoff are expounded by the example of calculating the entropy of spherically symmetric static black hole Dirac field.
    • 基金项目: 国家自然科学基金(批准号:10873003,11045005)和浙江省自然科学基金(批准号:Y6090739)资助的课题.
    [1]

    't Hooft G 1985 Nucl. Phys. B 256 727

    [2]

    Li X, Zhao Z 2000 Phys. Rev. D 62 104001

    [3]

    Liu W B, Zhao Z 2001 Chin. Phys. Lett. 18 345

    [4]

    Gao C J, Shen Y G 2001 Chin. Phys. Lett. 18 1167

    [5]

    Zhao R, Zhang L C, Hu S Q 2006 Acta Phys. Sin. 55 3902(in Chinese)[赵 仁、 张丽春、 胡双启 2006 物理学报 55 3902]

    [6]

    Liu C Z 2005 Acta Phys. Sin. 54 1977 (in Chinese)[刘成周 2005 物理学报 54 1977]

    [7]

    Hu S Q, Zhao R 2005 Chin. Phys. 14 1977

    [8]

    Wang G Z, Wang J L 2004 Acta Phys. Sin. 53 1669 (in Chinese)[王钢柱、 王纪龙 2004 物理学报 53 1669]

    [9]

    Li X 2002 Phys. Lett. B 540 9

    [10]

    Ashtekar A, Rovelli C, Smolin L 1992 Phys. Rev. Lett. 69 237

    [11]

    Gross D J, Mende P F 1988 Nucl. Phys. B 303 407

    [12]

    Amati D, Ciafaloni M, Veneziano G 1987 Phys. Lett. B 197 81

    [13]

    Maggiore M 1994 Phys. Rev. D 49 5182

    [14]

    Witten E 1997 Phys. Today 49 24

    [15]

    Kempf A, Mangano A, Mann R B 1995 Phys. Rev. D 52 1180

    [16]

    Benczik S, Chang L N, Minic D, Dkamura N, Rayyan S, Takeuchi T 2002 Phys. Rev. D 66 026003

    [17]

    Chang L N, Minic D, Okamura N, Takeuchi T 2002 Phys. Rev. D 65 125028

    [18]

    Zhao R, Zhang L C, Li H F 2009 Acta Phys. Sin. 58 2193 (in Chinese)[赵 仁、 张丽春、 李怀繁 2009 物理学报 58 2193]

    [19]

    Xie Z K, Yu G X, Liu C Z 2010 Acta Phys. Sin. 59 4390 (in Chinese)[谢志堃、 余国祥、 刘成周 2010 物理学报 59 4390]

    [20]

    Zhao Z 1999 Thermal Properties of Black Holes and Singularities of Space-Time (Beijing: Beijing Normal University Press) p36, p29 (In Chinese)[赵 峥 1999 黑洞的热性质与时空奇异性 (北京: 北京师范大学出版社) 第36页、 第29页]

    [21]

    Newman E, Penrose R 1962 J. Math. 3 566

    [22]

    Page D N 1976 Phys. Rev. D 14 1509

    [23]

    Susskind L 1995 J. Math. Phys. 36 6377

    [24]

    't Hooft G 1993 gr-qc/9310026

  • [1]

    't Hooft G 1985 Nucl. Phys. B 256 727

    [2]

    Li X, Zhao Z 2000 Phys. Rev. D 62 104001

    [3]

    Liu W B, Zhao Z 2001 Chin. Phys. Lett. 18 345

    [4]

    Gao C J, Shen Y G 2001 Chin. Phys. Lett. 18 1167

    [5]

    Zhao R, Zhang L C, Hu S Q 2006 Acta Phys. Sin. 55 3902(in Chinese)[赵 仁、 张丽春、 胡双启 2006 物理学报 55 3902]

    [6]

    Liu C Z 2005 Acta Phys. Sin. 54 1977 (in Chinese)[刘成周 2005 物理学报 54 1977]

    [7]

    Hu S Q, Zhao R 2005 Chin. Phys. 14 1977

    [8]

    Wang G Z, Wang J L 2004 Acta Phys. Sin. 53 1669 (in Chinese)[王钢柱、 王纪龙 2004 物理学报 53 1669]

    [9]

    Li X 2002 Phys. Lett. B 540 9

    [10]

    Ashtekar A, Rovelli C, Smolin L 1992 Phys. Rev. Lett. 69 237

    [11]

    Gross D J, Mende P F 1988 Nucl. Phys. B 303 407

    [12]

    Amati D, Ciafaloni M, Veneziano G 1987 Phys. Lett. B 197 81

    [13]

    Maggiore M 1994 Phys. Rev. D 49 5182

    [14]

    Witten E 1997 Phys. Today 49 24

    [15]

    Kempf A, Mangano A, Mann R B 1995 Phys. Rev. D 52 1180

    [16]

    Benczik S, Chang L N, Minic D, Dkamura N, Rayyan S, Takeuchi T 2002 Phys. Rev. D 66 026003

    [17]

    Chang L N, Minic D, Okamura N, Takeuchi T 2002 Phys. Rev. D 65 125028

    [18]

    Zhao R, Zhang L C, Li H F 2009 Acta Phys. Sin. 58 2193 (in Chinese)[赵 仁、 张丽春、 李怀繁 2009 物理学报 58 2193]

    [19]

    Xie Z K, Yu G X, Liu C Z 2010 Acta Phys. Sin. 59 4390 (in Chinese)[谢志堃、 余国祥、 刘成周 2010 物理学报 59 4390]

    [20]

    Zhao Z 1999 Thermal Properties of Black Holes and Singularities of Space-Time (Beijing: Beijing Normal University Press) p36, p29 (In Chinese)[赵 峥 1999 黑洞的热性质与时空奇异性 (北京: 北京师范大学出版社) 第36页、 第29页]

    [21]

    Newman E, Penrose R 1962 J. Math. 3 566

    [22]

    Page D N 1976 Phys. Rev. D 14 1509

    [23]

    Susskind L 1995 J. Math. Phys. 36 6377

    [24]

    't Hooft G 1993 gr-qc/9310026

  • [1] 黄海, 贺锋, 孙航宾. 利用广义不确定关系计算 Reissner-Nordstrm-de Sitter黑洞的统计力学熵. 物理学报, 2012, 61(11): 110403. doi: 10.7498/aps.61.110403
    [2] 杨学军, 赵峥. 砖墙模型不能给出黑洞熵. 物理学报, 2011, 60(8): 080402. doi: 10.7498/aps.60.080402
    [3] 贺锋, 赵凡. 利用广义不确定关系计算Gibbons-Maeda黑洞的统计力学熵. 物理学报, 2009, 58(2): 740-743. doi: 10.7498/aps.58.740
    [4] 赵 仁, 张丽春, 张胜利. 正则黑洞熵. 物理学报, 2007, 56(7): 3719-3722. doi: 10.7498/aps.56.3719
    [5] 韩亦文, 洪 云, 杨树政. 广义不确定关系与整体单极黑洞Dirac场的熵. 物理学报, 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [6] 赵 仁, 张丽春, 胡双启. 黑洞的统计熵. 物理学报, 2006, 55(8): 3902-3905. doi: 10.7498/aps.55.3902
    [7] 李固强. Anti-de Sitter时空内柱黑洞的量子熵. 物理学报, 2006, 55(2): 995-998. doi: 10.7498/aps.55.995
    [8] 刘晓莹, 张 甲. 广义不确定关系与黑洞附近的热力学量. 物理学报, 2006, 55(11): 5638-5642. doi: 10.7498/aps.55.5638
    [9] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵. 物理学报, 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [10] 刘成周. 动态广义球对称含荷黑洞的量子熵. 物理学报, 2005, 54(5): 1977-1981. doi: 10.7498/aps.54.1977
    [11] 苏九清, 李传安. 高自旋场对静态球对称黑洞熵的贡献. 物理学报, 2005, 54(2): 530-533. doi: 10.7498/aps.54.530
    [12] 张建华, 张青松. 高自旋场对Vaidya-Bonner黑洞熵的贡献. 物理学报, 2005, 54(11): 5500-5503. doi: 10.7498/aps.54.5500
    [13] 韩亦文, 洪 云. Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵. 物理学报, 2004, 53(10): 3270-3273. doi: 10.7498/aps.53.3270
    [14] 李固强. 自旋场对Barriola-vilenkin黑洞熵的量子修正. 物理学报, 2003, 52(6): 1346-1349. doi: 10.7498/aps.52.1346
    [15] 张靖仪. 一般球对称带电蒸发黑洞Dirac场的熵. 物理学报, 2003, 52(9): 2354-2358. doi: 10.7498/aps.52.2354
    [16] 孟庆苗, 苏九清, 李传安. 球对称动态黑洞Dirac场的统计熵. 物理学报, 2003, 52(7): 1822-1826. doi: 10.7498/aps.52.1822
    [17] 李传安, 魏显起, 孟庆苗, 刘景伦. 动态广义球对称含荷黑洞的统计熵. 物理学报, 2002, 51(9): 2173-2176. doi: 10.7498/aps.51.2173
    [18] 李传安, 孟庆苗, 苏九清. 静态球对称黑洞Dirac场的统计熵. 物理学报, 2002, 51(8): 1897-1900. doi: 10.7498/aps.51.1897
    [19] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵. 物理学报, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [20] 赵仁, 张丽春. Reissner-Nordstrom几何中标量场的统计熵与能斯特定理. 物理学报, 2001, 50(6): 1015-1018. doi: 10.7498/aps.50.1015
计量
  • 文章访问数:  6944
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-21
  • 修回日期:  2010-08-06
  • 刊出日期:  2011-03-05

无截断薄膜模型与Dirac场的黑洞熵

  • 1. (1)北京师范大学物理系,北京 100875; (2)绍兴文理学院物理与电子信息系,绍兴 312000
    基金项目: 国家自然科学基金(批准号:10873003,11045005)和浙江省自然科学基金(批准号:Y6090739)资助的课题.

摘要: 计算黑洞熵的砖墙模型被改进为薄膜模型后其物理思想更直接而明了,且突出了事件视界作为静态或稳态黑洞特征面的重要性.但为避免发散,薄膜模型同样需要引入紫外截断因子.截断因子的引入非常人为,至今没有给以合理的解释.有文献将广义不确定关系引入黑洞熵的计算而不需要任何截断便可避免发散.本文以静态球对称黑洞Dirac场的熵的计算为例,阐述了无截断薄膜模型及其与有截断薄膜模型的本质区别.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回