搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁感应透明介质中非线性法拉第偏转

佘彦超 张蔚曦 王登龙

引用本文:
Citation:

电磁感应透明介质中非线性法拉第偏转

佘彦超, 张蔚曦, 王登龙

Nonlinear Faraday rotation in electromagnetically induce transparency medium

She Yan-Chao, Zhang Wei-Xi, Wang Deng-Long
PDF
导出引用
  • 利用多重尺度法,解析地研究了V型五能级超冷原子电磁感应透明介质中弱的线偏振探测光的传播特性. 结果表明,仅考虑系统的线性效应,随着耦合光强度的增加,介质对探测光的吸收迅速减少,而探测光的传播速度逐渐增加,但比真空中的光速要低若干个数量级. 同时发现,在相同的外加磁场下探测光的非线性法拉第偏转方向与线性法拉第偏转相反,且偏转角更大. 这说明电磁感应透明介质中探测光的法拉第偏转主要是由系统的非线性效应调控.
    By using multiple-scale methods, we study analytically the propagation properties of the weak linear polarization probe optical field in a cold lifetime-broadened five-level V type atomic system via electromagnetically induced transparency. It is shown that with the strength of the coupling field increasing, the absorption of the probe optical field decreases rapidly and the group velocity of the probe optical field increases quickly under the consideration of linear effect. However, the velocity is several orders of magnitude slower than the light speed in vacuum. Meanwhile, we find that for the same magnetic field the nonlinear Faraday rotation direction is opposite to linear Faraday rotation, and its rotation angle grows bigger than that of linear Faraday rotation. These results mean that the Faraday rotation of the electromagnetically induced transparency medium can be controlled by the nonlinear effect.
    • 基金项目: 国家自然科学基金(批准号:10674113)、量子工程和微纳能源技术湖南省普通高等学校重点实验室基金(批准号:09QNT05)和铜仁学院科研计划(批准号:TS1009, TR054)资助的课题.
    [1]

    Faraday M 1846 Philos. Mag. 28 294

    [2]

    Kimura M, Kondo H, Hattori S 1965 J. Phys. Soc. Jpn. 20 1778

    [3]

    Day G W, Payne D N, Barlow A J, Ramskov-Hansent J J 1982 Opt. Lett. 7 238

    [4]

    Budker D, Gawlik W, Kimball D F, Rochester S M, Yashchuk V V, Weis A 2002 Rev. Mod. Phys. 74 1153

    [5]

    Liang Z C, Zhao R, Bao G 2009 Acta Phys. Sin. 58 5479 (in Chinese) [梁忠诚、赵 瑞、包 刚 2009 物理学报 58 5479]

    [6]

    Ghosh A, Hill W, Fischer P 2007 Phys. Rev. A 76 055402

    [7]

    Zhang L, Zhang R 2008 J. Magn. Magn. Mater. 320 1849

    [8]

    Takei N, Takeuchi M, Eto Y, Noguchi A, Zhang P, Ueda M, Kozuma M 2010 Phys. Rev. A 81 042331

    [9]

    Zhang F, Xu Y, Yang J, Guillot M 2000 J. Phys.: Condens. Matter 12 7287

    [10]

    Yan F, Cui M Q, Chen K, Sun L J, Xi S B, Zhou K J, Zheng L, Zhao Y D, Wang Z S, Zhu J T, Zhang Z, Zhao J 2008 Acta Phys. Sin. 57 2860 (in Chinese) [鄢 芬、崔明启、陈 凯、孙立娟、席识博、周克瑾、郑 雷、赵屹东、王占山、朱京涛 张众、赵 佳 2008 物理学报 57 2860]

    [11]

    Nath R, Santos L 2010 Phys. Rev. A 81 033626

    [12]

    Wojciechowski A, Corsini E, Zachorowski J, Gawlik W 2010 Phys. Rev. A 81 053420

    [13]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [14]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [15]

    She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208

    [16]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [17]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 74 046601

    [18]

    Yang W X, Chen A X, Si L G, Jiang K, Yang X, Lee R K 2010 Phys. Rev. A 81 023814

    [19]

    Yang W X, Lee R K 2008 Euro. Phys. Lett. 83 14002

    [20]

    Yan S B, Liu T, Geng T, Zhang T C, Peng K C, Wang J M 2004 Chin. Phys. 13 1669

    [21]

    Li J H, Yang W X, Peng J C 2004 Chin. Phys. 13 1694

    [22]

    Li Y Y, Hou X, Bai J T, Yan J F, Gan C L, Zhang Y P 2008 Chin. Phys. B 17 2885

    [23]

    Ba N, Gao J W, Tian X X, Wu X, Wu J H 2010 Chin. Phys. B 19 074208

    [24]

    Zhang L Y, Liu Z D 2005 Acta Phys. Sin. 54 3641 (in Chinese) [张丽英、刘正东 2005 物理学报 54 3641]

    [25]

    Drampyan R, Pustelny S, Gawlik W 2009 Phys. Rev. A 80 0338115

    [26]

    Hang C, Huang G X 2007 Chin. Opt. Lett. 5 47

  • [1]

    Faraday M 1846 Philos. Mag. 28 294

    [2]

    Kimura M, Kondo H, Hattori S 1965 J. Phys. Soc. Jpn. 20 1778

    [3]

    Day G W, Payne D N, Barlow A J, Ramskov-Hansent J J 1982 Opt. Lett. 7 238

    [4]

    Budker D, Gawlik W, Kimball D F, Rochester S M, Yashchuk V V, Weis A 2002 Rev. Mod. Phys. 74 1153

    [5]

    Liang Z C, Zhao R, Bao G 2009 Acta Phys. Sin. 58 5479 (in Chinese) [梁忠诚、赵 瑞、包 刚 2009 物理学报 58 5479]

    [6]

    Ghosh A, Hill W, Fischer P 2007 Phys. Rev. A 76 055402

    [7]

    Zhang L, Zhang R 2008 J. Magn. Magn. Mater. 320 1849

    [8]

    Takei N, Takeuchi M, Eto Y, Noguchi A, Zhang P, Ueda M, Kozuma M 2010 Phys. Rev. A 81 042331

    [9]

    Zhang F, Xu Y, Yang J, Guillot M 2000 J. Phys.: Condens. Matter 12 7287

    [10]

    Yan F, Cui M Q, Chen K, Sun L J, Xi S B, Zhou K J, Zheng L, Zhao Y D, Wang Z S, Zhu J T, Zhang Z, Zhao J 2008 Acta Phys. Sin. 57 2860 (in Chinese) [鄢 芬、崔明启、陈 凯、孙立娟、席识博、周克瑾、郑 雷、赵屹东、王占山、朱京涛 张众、赵 佳 2008 物理学报 57 2860]

    [11]

    Nath R, Santos L 2010 Phys. Rev. A 81 033626

    [12]

    Wojciechowski A, Corsini E, Zachorowski J, Gawlik W 2010 Phys. Rev. A 81 053420

    [13]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [14]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [15]

    She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208

    [16]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [17]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 74 046601

    [18]

    Yang W X, Chen A X, Si L G, Jiang K, Yang X, Lee R K 2010 Phys. Rev. A 81 023814

    [19]

    Yang W X, Lee R K 2008 Euro. Phys. Lett. 83 14002

    [20]

    Yan S B, Liu T, Geng T, Zhang T C, Peng K C, Wang J M 2004 Chin. Phys. 13 1669

    [21]

    Li J H, Yang W X, Peng J C 2004 Chin. Phys. 13 1694

    [22]

    Li Y Y, Hou X, Bai J T, Yan J F, Gan C L, Zhang Y P 2008 Chin. Phys. B 17 2885

    [23]

    Ba N, Gao J W, Tian X X, Wu X, Wu J H 2010 Chin. Phys. B 19 074208

    [24]

    Zhang L Y, Liu Z D 2005 Acta Phys. Sin. 54 3641 (in Chinese) [张丽英、刘正东 2005 物理学报 54 3641]

    [25]

    Drampyan R, Pustelny S, Gawlik W 2009 Phys. Rev. A 80 0338115

    [26]

    Hang C, Huang G X 2007 Chin. Opt. Lett. 5 47

  • [1] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [2] 裴丽娅. 基于共振Raman增强的三阶非线性过程. 物理学报, 2020, 69(16): 164203. doi: 10.7498/aps.69.20200418
    [3] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [4] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [5] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [6] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [7] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [8] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [9] 张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉. 二维电磁感应光子带隙的动态生成与调控. 物理学报, 2014, 63(22): 224203. doi: 10.7498/aps.63.224203
    [10] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [11] 于淼, 张 岩, 房博, 高俊艳, 高金伟, 吴金辉. 电磁感应双光子带隙的产生和控制. 物理学报, 2012, 61(13): 134204. doi: 10.7498/aps.61.134204
    [12] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [13] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] 杜 丹, 胡响明. 级联三能级介质中非线性光学信号的增强. 物理学报, 2006, 55(10): 5232-5236. doi: 10.7498/aps.55.5232
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  6720
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-25
  • 修回日期:  2010-09-18
  • 刊出日期:  2011-03-05

电磁感应透明介质中非线性法拉第偏转

  • 1. (1)铜仁学院物理与电子科学系,铜仁 554300; (2)铜仁学院物理与电子科学系,铜仁 554300;湘潭大学物理系,量子工程与微纳能源技术湖南省普通高等学校重点实验室,湘潭 411105; (3)湘潭大学物理系,量子工程与微纳能源技术湖南省普通高等学校重点实验室,湘潭 411105
    基金项目: 国家自然科学基金(批准号:10674113)、量子工程和微纳能源技术湖南省普通高等学校重点实验室基金(批准号:09QNT05)和铜仁学院科研计划(批准号:TS1009, TR054)资助的课题.

摘要: 利用多重尺度法,解析地研究了V型五能级超冷原子电磁感应透明介质中弱的线偏振探测光的传播特性. 结果表明,仅考虑系统的线性效应,随着耦合光强度的增加,介质对探测光的吸收迅速减少,而探测光的传播速度逐渐增加,但比真空中的光速要低若干个数量级. 同时发现,在相同的外加磁场下探测光的非线性法拉第偏转方向与线性法拉第偏转相反,且偏转角更大. 这说明电磁感应透明介质中探测光的法拉第偏转主要是由系统的非线性效应调控.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回