搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

池沸腾中气泡生长过程的格子Boltzmann方法模拟

曾建邦 李隆键 廖全 蒋方明

引用本文:
Citation:

池沸腾中气泡生长过程的格子Boltzmann方法模拟

曾建邦, 李隆键, 廖全, 蒋方明

Simulation of bubble growth process in pool boilingusing lattice Boltzmann method

Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian
PDF
导出引用
  • 在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0
    In this paper, a new single-component lattice Boltzmann model, which is based on exact difference method and extended with an energy transfer equation to model heat transfer, is proposed to describe liquid-vapor phase transition process. The wettability of the heated wall is modeled by an interaction force between solid wall and fluid. This new model is validated through the simulation of water phase transition process. It is found that the simulation results are in good agreement with the experimental data. The surface tension of water, which is obtained from simulation results at different temperatures, is closed to experimental data. These results are in agree ment with those obtained from Laplace law. In order to demonstrate the availability of this model for dealing with phase transition and two-phase problems, the bubble growth process on a heated surface is simulated in pool boiling. It is found that the bubble departure diameter is proportional to g-0.5 and the release frequency scales with g0.75, where g is the gravitational acceleration. These results are in good agreement with those obtained from the empirical relationship and reference results. Finally, simulation results show no relationship between the bubble departure diameter and the static contact angle, but the bubble release frequency increases exponentially with the latter.
    • 基金项目: 国家自然科学基金(批准号:51076172)、中国核动力研究设计院重点实验室基金(批准号:9140C710901090C71,9140C7101020802)和中央高校基本科研业务费(批准号:CDJXS11142232)资助的课题.
    [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [2] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212183
    [3] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟. 物理学报, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [6] 臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法. 物理学报, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [7] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [10] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [11] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [13] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [14] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [16] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [19] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  7966
  • PDF下载量:  904
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-05
  • 修回日期:  2010-10-05
  • 刊出日期:  2011-03-05

池沸腾中气泡生长过程的格子Boltzmann方法模拟

  • 1. (1)中国科学院可再生能源与天然气水合物重点实验室,广州 510640; (2)重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030; (3)重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;中国科学院可再生能源与天然气水合物重点实验室,广州 510640
    基金项目: 国家自然科学基金(批准号:51076172)、中国核动力研究设计院重点实验室基金(批准号:9140C710901090C71,9140C7101020802)和中央高校基本科研业务费(批准号:CDJXS11142232)资助的课题.

摘要: 在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回