搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rosenberg问题的Noether-Lie对称性与守恒量

刘晓巍 李元成

引用本文:
Citation:

Rosenberg问题的Noether-Lie对称性与守恒量

刘晓巍, 李元成

Noether-Lie symmetry and conserved quantities of the Rosenberg problem

Liu Xiao-Wei, Li Yuan-Cheng
PDF
导出引用
  • 研究Rosenberg问题的对称性与守恒量.给出Rosenberg问题的Noether-Lie对称性的定义和判据,以及由Noether-Lie对称性导出Noether守恒量和Hojman守恒量.
    The Noether-Lie symmetry and conserved quantities of the Rosenberg problem are studied. From the study of the Rosenberg problem,the Noether symmetry and the Lie symmetry for the equation are obtained, thereby the conserved quantities are deduced. Then the definition and the criterion for Noether-Lie symmetry of the Rosenberg problem are derived. Finally,the Noether conserved quantity and the Hojman conserved quantity are deduced from the Noether-Lie symmetry.
    [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen.Math. Phys. KI II 235

    [2]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [3]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [4]

    Mei F X 2001 Chin. Phys. 10 177

    [5]

    Li Z P 1993 Classical and quantal dynamics of constrained systems and Their symmetrical properties (Beijing: Beijing Polytechnic University press) (in Chinese) [李子平 1993 经典和量子约束系统及其对称性质 (北京:北京工业大学出社)]

    [6]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [7]

    Bahar L Y,Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [8]

    Mei F X 2000 Acta Mech. Sin. 32 466 (in Chinese)[梅凤翔 2000 力学学报32 466]

    [9]

    Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 物理学报52 1048]

    [10]

    Zhang Y 2003 Acta Phys. Sin. 52 1832 (in Chinese) [张 毅 2003 物理学报 52 1832]

    [11]

    Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [12]

    Lou Z M 2004 Acta Phys. Sin. 53 2046 (in Chinese) [楼智美 2004 物理学报53 2046]

    [13]

    Luo S K,Guo Y X,Mei F X 2004 Acta Phys. Sin. 53 2413 (in Chinese) [罗绍凯、郭永新、梅凤翔 2004 物理学报 53 2413]

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Xu X J,Mei F X,Qin M C 2004 Chin. Phys. 13 1999

    [16]

    Mei F X 2005 Transactions of Beijing Institute of Technology 25 283(in Chinese) [梅凤翔 2005 北京理工大学学报 25 283]

    [17]

    Li Y C,Xia L L,Wang X M,Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成、夏丽莉、王小明、刘晓巍 2010 物理学报 59 3639]

    [18]

    Rosenberg R M 1977 Analytical Dynamics of Discrete Systems (New York: Plenum Press)

    [19]

    Ge W H,Zhang Y,Xue Y 2010 Acta Phys. Sin. 59 4434 (in Chinese) [葛伟宽、张 毅、薛 纭 2010 物理学报 59 4434]

    [20]

    Novoselov V S 1966 Variational Priciples in Mechanics (Leningrad: LGV Press) (in Russian)

    [21]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔 1985 非完整力学基础 (北京:北京工业学院出版社)]

  • [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen.Math. Phys. KI II 235

    [2]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [3]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [4]

    Mei F X 2001 Chin. Phys. 10 177

    [5]

    Li Z P 1993 Classical and quantal dynamics of constrained systems and Their symmetrical properties (Beijing: Beijing Polytechnic University press) (in Chinese) [李子平 1993 经典和量子约束系统及其对称性质 (北京:北京工业大学出社)]

    [6]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [7]

    Bahar L Y,Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125

    [8]

    Mei F X 2000 Acta Mech. Sin. 32 466 (in Chinese)[梅凤翔 2000 力学学报32 466]

    [9]

    Mei F X 2003 Acta Phys. Sin. 52 1048 (in Chinese) [梅凤翔 2003 物理学报52 1048]

    [10]

    Zhang Y 2003 Acta Phys. Sin. 52 1832 (in Chinese) [张 毅 2003 物理学报 52 1832]

    [11]

    Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [12]

    Lou Z M 2004 Acta Phys. Sin. 53 2046 (in Chinese) [楼智美 2004 物理学报53 2046]

    [13]

    Luo S K,Guo Y X,Mei F X 2004 Acta Phys. Sin. 53 2413 (in Chinese) [罗绍凯、郭永新、梅凤翔 2004 物理学报 53 2413]

    [14]

    Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291

    [15]

    Xu X J,Mei F X,Qin M C 2004 Chin. Phys. 13 1999

    [16]

    Mei F X 2005 Transactions of Beijing Institute of Technology 25 283(in Chinese) [梅凤翔 2005 北京理工大学学报 25 283]

    [17]

    Li Y C,Xia L L,Wang X M,Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成、夏丽莉、王小明、刘晓巍 2010 物理学报 59 3639]

    [18]

    Rosenberg R M 1977 Analytical Dynamics of Discrete Systems (New York: Plenum Press)

    [19]

    Ge W H,Zhang Y,Xue Y 2010 Acta Phys. Sin. 59 4434 (in Chinese) [葛伟宽、张 毅、薛 纭 2010 物理学报 59 4434]

    [20]

    Novoselov V S 1966 Variational Priciples in Mechanics (Leningrad: LGV Press) (in Russian)

    [21]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔 1985 非完整力学基础 (北京:北京工业学院出版社)]

计量
  • 文章访问数:  4497
  • PDF下载量:  770
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-08
  • 修回日期:  2010-10-16
  • 刊出日期:  2011-07-15

Rosenberg问题的Noether-Lie对称性与守恒量

  • 1. 中国石油大学(华东)物理科学与技术学院,青岛 266555

摘要: 研究Rosenberg问题的对称性与守恒量.给出Rosenberg问题的Noether-Lie对称性的定义和判据,以及由Noether-Lie对称性导出Noether守恒量和Hojman守恒量.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回