搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体双量子阱的共振隧穿

费宏明 周飞 杨毅彪 梁九卿

引用本文:
Citation:

光子晶体双量子阱的共振隧穿

费宏明, 周飞, 杨毅彪, 梁九卿

Resonance tunneling through photonic double quantum well system

Zhou Fei, Yang Yi-Biao, Liang Jiu-Qing, Fei Hong-Ming
PDF
导出引用
  • 采用R矩阵法研究了二维光子晶体双量子阱的共振隧穿特性.研究发现:光子晶体双量子阱的共振频率可以通过调节双阱的耦合强度来控制;对称双量子阱中,共振峰发生双劈裂;不对称双量子阱,共振劈裂消失.但是,由改变左手介质和右手介质在双阱中的排列顺序产生的阱介质不对称阱的共振劈裂消失与阱宽不对称的双阱产生的共振劈裂消失不一样.进一步对一维光子晶体量子阱分析后发现,前者是由光在左右手介质中传播的能流方向相反产生干涉相消而引起;后者是由阱宽不同,阱的本征模不一样而引起.
    Resonant tunneling of light through double-well structure is investigated by the R-matrix algorithm. We find that the resonant frequency can be controlled by the coupling strength between the two wells. The transmission probability shows the 2-fold peak-splitting in a symmetric double-well system, and the distortion of the resonance peak-splitting in an asymmetric double-well system. The distortion of the resonance peak-splitting by alternately placing Right-hand and Left-hend materials in the two wells is different from that resulted from the asymmetry of well-width. Moreover the distortion of the resonance peak-splitting is analyzed by means of the one-dimensional photonic QW system. The former can be understood by the destructive interference, which may lead to the complete cancellation of resonant mode, while the latter is due to the relative sifts of eigenmodes in the two wells.
    • 基金项目: 国家自然科学基金(批准号:10775091,60927007)资助的课题.
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals (Princeton University Press, Princeton)

    [4]

    Soukoulis C M 1996 Photonic Band Gap Materials (Kluwer, Dordrecht)

    [5]

    Zhang Z, Satpathy S 1990 Phys. Rev. Lett. 65 2650

    [6]

    Robertson W M, Arjavalingam G A, Meade R D, Brommer K D, Rappe A M, Joannopoulos J D 1992 Phys. Rev. Lett. 68 2023

    [7]

    Li Z Y, Gu B Y, Yang G Z 1998 Phys. Rev. Lett. 81 2574

    [8]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609

    [9]

    Sun S L, Huang X Q, Zhou L 2007 Phys. Rev. E 75 066602

    [10]

    Zentgraf T 2006 Phys. Rev. B 73 115103

    [11]

    Joannopoulos J D, Villeneuve P R, Fan S 1997 Photonic Crystals: Putting a New Twist on Light, Nature (London) 386 143

    [12]

    Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152

    [13]

    Yablonovitch E, Gmitter T J, Leung K M 1991 Phys. Rev. Lett. 67 2295

    [14]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573

    [15]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [16]

    Li Z F, Lin L L, Gu B Y, Yang G Z 2000 Physic B 279 159

    [17]

    Li Z Y, Gu B Y, Yang G Z 1999 Eur. Phys. J. B 11 65

    [18]

    Wang X H, Gu B Y, Li Z Y, Yang G Z 1999 Phys. Rev. B 60 11417

    [19]

    Veselago V C 1968 Sov. Phys. Usp. 10 509

    [20]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [21]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901

    [22]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2005 Phys. Rev. Lett. 95 193903

    [23]

    Leung K M, Liu Y F 1990 Phys. Rev. Lett. 65 2646

    [24]

    Economou E N, Zdetsis A 1989 Phys. Rev. B 40 1334

    [25]

    Satpathy S, Zhang Z, Salehpour M R 1990 Phys. Rev. Lett. 64 1239

    [26]

    Pendry J B 1994 J. Mod. Opt. 41 209

    [27]

    Bell P M, Pendry J B, Marin Moreno L, Ward A J 1995 Comput. Phys. Commun. 85 306

    [28]

    Li Z Y, Lin L L 2003 Phys. Rev. E 67 046607

    [29]

    Lin L L, Li Z Y, Ho K M 2003 J. Appl. Phys. 94 811

    [30]

    Chan C T, Yu Q L, Ho K M 1995 Phys. Rev. B 51 16635

    [31]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA)

    [32]

    Fan S, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. B 54 11245

    [33]

    Chan Y S, Chan C T, Liu Z Y 1998 Phys. Rev. Lett. 80 956

    [34]

    Ward A J, Pendry J B 1998 Phys. Rev. B 58 7252

    [35]

    Elson J M, Tran P 1995 J. Opt. Soc. Am. A 12 1765

    [36]

    Elson J M, Tran P 1996 Phys. Rev. B 54 1711

    [37]

    Jiang Y K, Niu C, Lin D L 1999 Phys. Rev. B 59 9981

    [38]

    Yuankai Jiang, PhD dissertation 2005 State University of New York at Buffalo(Buffalo, New York)

    [39]

    Zi J, Wan J, Zhang C 1998 Appl. Phys. Lett. 73 2084

    [40]

    Yano S, Segawa Y, Bae J S, Mizuno K, Miyazaki H, Ohtaka K, Yamaguchi S 2001 Phys. Rev. B 63 153316

    [41]

    Sweeny M, Xu J M 1989 Appl. Phys. Lett. 54 546

    [42]

    Day D J, Chung Y, Webb C, Eckstein J N, Sweeny M, Xu J M 1990 Appl. Phys. Lett. 57 1260

    [43]

    Cox J D, Singh M R 2010 Nanoscale Res. Lett. 5 484

    [44]

    Fei H M, Jiang Y K, Liang J Q, Lin D L 2009 Chinese Physics B 18 2377

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals (Princeton University Press, Princeton)

    [4]

    Soukoulis C M 1996 Photonic Band Gap Materials (Kluwer, Dordrecht)

    [5]

    Zhang Z, Satpathy S 1990 Phys. Rev. Lett. 65 2650

    [6]

    Robertson W M, Arjavalingam G A, Meade R D, Brommer K D, Rappe A M, Joannopoulos J D 1992 Phys. Rev. Lett. 68 2023

    [7]

    Li Z Y, Gu B Y, Yang G Z 1998 Phys. Rev. Lett. 81 2574

    [8]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609

    [9]

    Sun S L, Huang X Q, Zhou L 2007 Phys. Rev. E 75 066602

    [10]

    Zentgraf T 2006 Phys. Rev. B 73 115103

    [11]

    Joannopoulos J D, Villeneuve P R, Fan S 1997 Photonic Crystals: Putting a New Twist on Light, Nature (London) 386 143

    [12]

    Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152

    [13]

    Yablonovitch E, Gmitter T J, Leung K M 1991 Phys. Rev. Lett. 67 2295

    [14]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573

    [15]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [16]

    Li Z F, Lin L L, Gu B Y, Yang G Z 2000 Physic B 279 159

    [17]

    Li Z Y, Gu B Y, Yang G Z 1999 Eur. Phys. J. B 11 65

    [18]

    Wang X H, Gu B Y, Li Z Y, Yang G Z 1999 Phys. Rev. B 60 11417

    [19]

    Veselago V C 1968 Sov. Phys. Usp. 10 509

    [20]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [21]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901

    [22]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2005 Phys. Rev. Lett. 95 193903

    [23]

    Leung K M, Liu Y F 1990 Phys. Rev. Lett. 65 2646

    [24]

    Economou E N, Zdetsis A 1989 Phys. Rev. B 40 1334

    [25]

    Satpathy S, Zhang Z, Salehpour M R 1990 Phys. Rev. Lett. 64 1239

    [26]

    Pendry J B 1994 J. Mod. Opt. 41 209

    [27]

    Bell P M, Pendry J B, Marin Moreno L, Ward A J 1995 Comput. Phys. Commun. 85 306

    [28]

    Li Z Y, Lin L L 2003 Phys. Rev. E 67 046607

    [29]

    Lin L L, Li Z Y, Ho K M 2003 J. Appl. Phys. 94 811

    [30]

    Chan C T, Yu Q L, Ho K M 1995 Phys. Rev. B 51 16635

    [31]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA)

    [32]

    Fan S, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. B 54 11245

    [33]

    Chan Y S, Chan C T, Liu Z Y 1998 Phys. Rev. Lett. 80 956

    [34]

    Ward A J, Pendry J B 1998 Phys. Rev. B 58 7252

    [35]

    Elson J M, Tran P 1995 J. Opt. Soc. Am. A 12 1765

    [36]

    Elson J M, Tran P 1996 Phys. Rev. B 54 1711

    [37]

    Jiang Y K, Niu C, Lin D L 1999 Phys. Rev. B 59 9981

    [38]

    Yuankai Jiang, PhD dissertation 2005 State University of New York at Buffalo(Buffalo, New York)

    [39]

    Zi J, Wan J, Zhang C 1998 Appl. Phys. Lett. 73 2084

    [40]

    Yano S, Segawa Y, Bae J S, Mizuno K, Miyazaki H, Ohtaka K, Yamaguchi S 2001 Phys. Rev. B 63 153316

    [41]

    Sweeny M, Xu J M 1989 Appl. Phys. Lett. 54 546

    [42]

    Day D J, Chung Y, Webb C, Eckstein J N, Sweeny M, Xu J M 1990 Appl. Phys. Lett. 57 1260

    [43]

    Cox J D, Singh M R 2010 Nanoscale Res. Lett. 5 484

    [44]

    Fei H M, Jiang Y K, Liang J Q, Lin D L 2009 Chinese Physics B 18 2377

  • [1] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [2] 耿滔, 王岩, 王新, 董祥美. 非长波极限下二维光子晶体中横电模的等效介质理论. 物理学报, 2015, 64(15): 154210. doi: 10.7498/aps.64.154210
    [3] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [4] 康永强, 高鹏, 刘红梅, 张淳民, 石云龙. 单负材料组成一维光子晶体双量子阱结构的共振模. 物理学报, 2015, 64(6): 064207. doi: 10.7498/aps.64.064207
    [5] 陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁. 对称双缺陷光子晶体的可调谐滤波特性分析. 物理学报, 2014, 63(15): 154207. doi: 10.7498/aps.63.154207
    [6] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [7] 何正红, 叶志成, 李争光, 崔晴宇, 苏翼凯. 复合周期的介质-液晶光子晶体研究. 物理学报, 2011, 60(3): 034213. doi: 10.7498/aps.60.034213
    [8] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [9] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析. 物理学报, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [10] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [11] 武明峰, 孟繁义, 傅佳辉, 吴 群, 吴 健. 新型小型化的平面左手介质微带线及其后向波特性验证. 物理学报, 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [12] 傅佳辉, 孟繁义, 杨国辉, 吴 群, 刘心蕾. 基于非分裂FDTD的左手介质电磁特性的研究. 物理学报, 2008, 57(7): 4070-4075. doi: 10.7498/aps.57.4070
    [13] 杨 锐, 谢拥军, 王 鹏, 杨同敏. 含有左手介质双层基底的亚波长谐振腔微带天线研究. 物理学报, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [14] 姜永远, 张永强, 时红艳, 侯春风, 孙秀冬. 单轴各向异性左手介质表面的Goos-H?nchen位移. 物理学报, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [15] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [16] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [17] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究. 物理学报, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [18] 武明峰, 孟繁义, 吴 群, 吴 健. 基于DGS和双层SRRs结构的左手介质微带线的设计. 物理学报, 2006, 55(11): 5790-5794. doi: 10.7498/aps.55.5790
    [19] 董慧媛, 刘 楣, 吴宗汉, 汪 静, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究. 物理学报, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [20] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
计量
  • 文章访问数:  6156
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-22
  • 修回日期:  2011-03-28
  • 刊出日期:  2011-07-15

光子晶体双量子阱的共振隧穿

  • 1. (1)山西大学理论物理研究所, 太原 030006; (2)太原理工大学物理与光电工程系, 太原 030024
    基金项目: 国家自然科学基金(批准号:10775091,60927007)资助的课题.

摘要: 采用R矩阵法研究了二维光子晶体双量子阱的共振隧穿特性.研究发现:光子晶体双量子阱的共振频率可以通过调节双阱的耦合强度来控制;对称双量子阱中,共振峰发生双劈裂;不对称双量子阱,共振劈裂消失.但是,由改变左手介质和右手介质在双阱中的排列顺序产生的阱介质不对称阱的共振劈裂消失与阱宽不对称的双阱产生的共振劈裂消失不一样.进一步对一维光子晶体量子阱分析后发现,前者是由光在左右手介质中传播的能流方向相反产生干涉相消而引起;后者是由阱宽不同,阱的本征模不一样而引起.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回