搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电池材料数据库的发展与应用

吴思远 王宇琦 肖睿娟 陈立泉

引用本文:
Citation:

电池材料数据库的发展与应用

吴思远, 王宇琦, 肖睿娟, 陈立泉

Development and application of battery materials database

Wu Si-Yuan, Wang Yu-Qi, Xiao Rui-Juan, Chen Li-Quan
PDF
HTML
导出引用
  • 基于自动化技术和计算机技术的高通量方法可快速提供数以万计的科研数据, 对如何科学、高效的管理科研数据提出了新的挑战. 可充放的二次电池作为一种清洁高效的能源存储器件, 是电动汽车发展的关键, 也是风/光电储能的首选. 电池器件性能的提升与电池新材料的研发密切相关, 电池材料数据库的发展可在电池材料研发中引入基于大数据的新兴方法, 加速电池材料的开发. 本文从电池材料数据的获取、通用型及特定性质的电池材料数据库构建、大数据方法对电池材料研发的促进和发展电池材料数据库所面临的挑战等方面对电池材料数据库的发展和应用进行了介绍.
    High-throughput methods based on automation technology and computer technology can quickly provide tens of thousands of scientific research data, which poses a new challenge to the scientific and efficient management of scientific data. Rechargeable secondary batteries are the keys to the development of electric vehicles and the first choice of wind/photoelectric energy storage. The discovery of new battery materials plays an important role in improving the performance of the secondary batteries. New methods based on big date can be introduced into the screening and design of battery materials to accelerate the development of secondary batteries. This work introduces the development and application of battery material database from the aspects of data acquisition, construction of general and specific battery material database, and the challenges faced by the battery material database.
      通信作者: 肖睿娟, rjxiao@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0701600)和国家自然科学基金(批准号: 51772321)资助的课题
      Corresponding author: Xiao Rui-Juan, rjxiao@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0701600) and the National Natural Science Foundation of China (Grant No. 51772321)
    [1]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [2]

    Chen R S, Li Q H, Yu X Q, Chen L Q, Li H 2020 Chem. Rev. 120 6820Google Scholar

    [3]

    Jain A, Persson K A, Ceder G 2016 APL Mater. 4 053102Google Scholar

    [4]

    Suh C, Fare C, Warren J A, Pyzer-Knapp E O 2020 Annu. Rev. Mater. Res. 50 1Google Scholar

    [5]

    Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar

    [6]

    Kirklin S, Meredig, Wolverton C 2013 Adv. Energy Mater. 3 252Google Scholar

    [7]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227Google Scholar

    [8]

    Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 13169Google Scholar

    [9]

    Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q 2011 Chem. Sci. 3 2217Google Scholar

    [10]

    Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar

    [11]

    http://e01.iphy.ac.cn/bmd [2020-9-17]

    [12]

    Zhang L W, He B, Zhao Q, Zou Z Y, Chi S T, Mi P H, Ye A J, Li Y J, Wang D, Avdeev M, Adams S, Shi S Q 2020 Adv. Funct. Mater. 30 2003087Google Scholar

    [13]

    Korbel S, Marques M A L, Botti S 2016 J. Mater. Chem. C 4 3157Google Scholar

    [14]

    Avdeev M, Sale M, Adams S, Rao R P 2012 Solid State Ionics 225 43Google Scholar

    [15]

    Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke D R 2013 Chem. Mater. 25 2911Google Scholar

    [16]

    Carrete J, Li W, Mingo N 2014 Phys. Rev. X 4 011019Google Scholar

    [17]

    Deem M W, Pophale R, Cheeseman P A, Earl D J 2009 J. Phys. Chem. C 113 21353Google Scholar

    [18]

    Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

    [19]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [20]

    Curtarolo S, Setyawan W, Hart G L W 2012 Comput. Mater. Sci. 58 218Google Scholar

    [21]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [22]

    https://atomly.net [2020-9-17]

    [23]

    Ghadbeigi L, Harada J K, Lettiere B R, Sparks T D 2015 Energy Environ. Sci. 8 1640Google Scholar

    [24]

    Huang S, Cole J M 2020 Sci. Data 7 260Google Scholar

    [25]

    Li Y S, Qi Y 2019 Energy Environ. Sci. 12 1286Google Scholar

    [26]

    Tian H K, Chakraborty A, Talin A, Eisenlohr P, Qi Y 2020 J. Electrochem. Soc. 167 090541Google Scholar

    [27]

    彭佳悦, 祖晨曦, 李泓 2013 储能科学与技术 2 55Google Scholar

    Peng J Y, Zu C X, Li H 2013 Energy Storage Sci. Technol. 2 55Google Scholar

    [28]

    Zu C X, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [29]

    吴娇杨, 刘品, 胡勇胜, 李泓 2016 储能科学与技术 5 443Google Scholar

    Wu J Y, Liu P, Hu Y S, Li H 2016 Energy Storage Sci. Technol. 5 443Google Scholar

    [30]

    Wang L, Wu Z, Zou J, Gao P, Niu X, Li H, Chen L 2019 Joule 3 2086Google Scholar

    [31]

    Cao W, Zhang J, Li H 2020 Energy Storage Mater. 26 46Google Scholar

    [32]

    Ceder G 2011 MRS Bulletin 35 693Google Scholar

    [33]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 NPJ. Comput. Mater. 1 15010Google Scholar

    [34]

    Jain A, Hautier G, Ong S P, Persson K 2016 J. Mater. Res. 31 977Google Scholar

    [35]

    Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera R S, Gold-Parker A, Vogt L, Brockway A M, Aspuru-Guzik A 2011 J. Phys. Chem. Lett. 2 2241Google Scholar

    [36]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [37]

    He B, Chi S, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S 2020 Sci. Data 7 151Google Scholar

    [38]

    Nuspl G, Takeuchi T, Weiß A, Kageyama H, Yoshizawa K, Yamabe T 1999 J. Appl. Phys. 86 5484Google Scholar

    [39]

    He B, Ye A J, Chi S, Mi P H, Ran Y B, Zhang L W, Zou X X, Pu B W, Zhao Q, Zou Z Y, Wang D, Zhang W Q, Zhao J T, Avdeev M, Shi S 2020 Sci. Data 7 153Google Scholar

    [40]

    Adams S, Rao R P 2011 Phys. Status Solidi A 208 1746Google Scholar

    [41]

    Henkelman G, Jonsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [42]

    Kirklin S, Meredig B, Wolverton C 2013 Advanced Energy Materials 3 252

    [43]

    Zhu Y, He X, Mo Y 2017 Adv. Sci. (Weinh) 4 1600517Google Scholar

    [44]

    Wang X L, Xiao R J, Li H, Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269Google Scholar

    [45]

    Sendek A D, Cubuk E D, Antoniuk E R, Cheon G, Cui Y, Reed E J 2018 Chem. Mater. 31 342Google Scholar

    [46]

    Liu B, Yang J, Yang H, Ye C, Mao Y, Wang J, Shi S, Yang J, Zhang W 2019 J. Mater. Chem. A 7 19961Google Scholar

    [47]

    Wang A P, Kadam S, Li H, Shi S Q 2018 NPJ Comput. Mater. 4 15Google Scholar

    [48]

    Liu Y, Zhao T L, Ju W W, Shi S Q 2017 J. Materiomics 3 159Google Scholar

    [49]

    Liu Y, Guo B R, Zou X X, Li Y J, Shi S Q 2020 Energy Storage Mater. 31 434Google Scholar

  • 图 1  材料数据的产生、归类和应用流程

    Fig. 1.  Flowchart of creation, classification and application of materials data.

    图 2  各类材料数据库的出现时间

    Fig. 2.  Appearance time of various materials databases.

    图 3  (a) 电池材料离子输运数据库网站页面; (b) 数据种类

    Fig. 3.  (a) The database of ion transport properties for battery materials; (b) data distributions for various types of materials.

    图 4  数据挖掘方法在探究材料构效关系中的应用

    Fig. 4.  Data mining method applied in exploring the relationship between structure and properties.

    图 5  新能源材料数据库的主要技术挑战

    Fig. 5.  The main technologic challenges in the development of energy materials database.

    表 1  高通量计算所能获得的材料性质

    Table 1.  Properties achieved by high-throughput calculations.

    计算数据物化性质材料种类
    总能量相图、反应路径、形成能热力学稳定材料
    电子结构带隙、电子传输、电荷分布特定电学性质材料
    原子磁矩磁构型、磁矩、磁阻等磁性材料
    声子谱晶格振动、红外吸收谱动力学稳定材料
    力学模量弹性模量、泊松比等力学材料
    复数介电常数介电性质介电材料
    反射系数反射/吸收率光学材料
    吸附能/位置表面吸附过程材料表面设计
    晶格匹配界面力学/界面化学稳定性材料界面设计
    离子扩散离子迁移路径、势垒等离子导体
    下载: 导出CSV

    表 2  国内外典型的通用型计算材料数据库及公开发布的高通量计算软件[19-22]

    Table 2.  Typical database forcomputational materials[19-22].

    数据库名称高通量计算软件
    Materials ProjectPymatgen
    AFLOWLIBAFLOW
    OQMDOQMD
    Atomly
    下载: 导出CSV

    表 3  机器学习模型应用于二次电池的构效关系

    Table 3.  Application of machine learning method in the research of secondary batteries.

    关心的问题输入量(描述符)输出量
    (目标性质)
    固态电解质原子结构以及它们的XRD
    图像信息、化学键数目、
    子晶格化学键的离子性、
    原子配位数、键长、位能、
    熔点、沸点…
    离子电
    导率或
    离子迁
    移能
    聚合物电解质化学结构、组成比率、处理
    温度、Mordred描述因子…
    离子电导率
    锂电极化学键、原子半径、单位
    原子体积、质量密度、
    子晶格电负性、Li原子
    周围原子数变化…
    热力学
    相稳定性
    界面热力学稳定性、结构
    和动力学参数…
    界面态
    电池制造活性材料质量比率、
    粘性、固液比率…
    孔隙率和电极
    的质量负载
    下载: 导出CSV

    表 4  不同层级的数据库类型、用途和使用方法

    Table 4.  TType, application and usage of battery materials database in various scales.

    层级数据库类型用途使用方法
    原子尺度基于理想材料模型获得的
    材料在原子尺度的本征性质数据
    了解所选用材料本身所
    具备的性质特征
    查询及挖掘原子结构及对应的电子结构、离子输运势垒等数据, 帮助寻找到具有目标物性的材料
    微观尺度引入实际材料中的缺陷和微观
    构型后获得的实际材料性质数据
    了解微观结构对材
    料性质的调制
    查询及挖掘缺陷、粒径大小、颗粒形状、比表面积等一系列变量描述下的材料性质数据, 帮助实现对所选材料的性质改善
    外场效应随电场、温度等外场条件改
    变时获得的材料性质数据
    了解材料性质对外
    界环境的响应
    查询及挖掘材料性质数据随外场条件的变化函数, 帮助设计电化学稳定的电池材料
    多相作用将单一材料性质数据扩展到
    多种材料之间相互作用的性质数据
    了解界面等由多相作用
    所决定的性质数据
    查询及挖掘电池中界面的组分、性质数据, 帮助选取相匹配的组成电池的各种材料
    宏观尺度电池器件的性能数据及充放
    电过程中电池材料的性质数据
    实现材料性质数据与电
    池器件性能的关联
    查询及挖掘上述四层性质数据与电池器件性能之间的联系, 帮助实现从材料到电池的整体设计
    下载: 导出CSV
  • [1]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [2]

    Chen R S, Li Q H, Yu X Q, Chen L Q, Li H 2020 Chem. Rev. 120 6820Google Scholar

    [3]

    Jain A, Persson K A, Ceder G 2016 APL Mater. 4 053102Google Scholar

    [4]

    Suh C, Fare C, Warren J A, Pyzer-Knapp E O 2020 Annu. Rev. Mater. Res. 50 1Google Scholar

    [5]

    Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar

    [6]

    Kirklin S, Meredig, Wolverton C 2013 Adv. Energy Mater. 3 252Google Scholar

    [7]

    Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227Google Scholar

    [8]

    Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 13169Google Scholar

    [9]

    Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q 2011 Chem. Sci. 3 2217Google Scholar

    [10]

    Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar

    [11]

    http://e01.iphy.ac.cn/bmd [2020-9-17]

    [12]

    Zhang L W, He B, Zhao Q, Zou Z Y, Chi S T, Mi P H, Ye A J, Li Y J, Wang D, Avdeev M, Adams S, Shi S Q 2020 Adv. Funct. Mater. 30 2003087Google Scholar

    [13]

    Korbel S, Marques M A L, Botti S 2016 J. Mater. Chem. C 4 3157Google Scholar

    [14]

    Avdeev M, Sale M, Adams S, Rao R P 2012 Solid State Ionics 225 43Google Scholar

    [15]

    Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke D R 2013 Chem. Mater. 25 2911Google Scholar

    [16]

    Carrete J, Li W, Mingo N 2014 Phys. Rev. X 4 011019Google Scholar

    [17]

    Deem M W, Pophale R, Cheeseman P A, Earl D J 2009 J. Phys. Chem. C 113 21353Google Scholar

    [18]

    Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

    [19]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [20]

    Curtarolo S, Setyawan W, Hart G L W 2012 Comput. Mater. Sci. 58 218Google Scholar

    [21]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [22]

    https://atomly.net [2020-9-17]

    [23]

    Ghadbeigi L, Harada J K, Lettiere B R, Sparks T D 2015 Energy Environ. Sci. 8 1640Google Scholar

    [24]

    Huang S, Cole J M 2020 Sci. Data 7 260Google Scholar

    [25]

    Li Y S, Qi Y 2019 Energy Environ. Sci. 12 1286Google Scholar

    [26]

    Tian H K, Chakraborty A, Talin A, Eisenlohr P, Qi Y 2020 J. Electrochem. Soc. 167 090541Google Scholar

    [27]

    彭佳悦, 祖晨曦, 李泓 2013 储能科学与技术 2 55Google Scholar

    Peng J Y, Zu C X, Li H 2013 Energy Storage Sci. Technol. 2 55Google Scholar

    [28]

    Zu C X, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [29]

    吴娇杨, 刘品, 胡勇胜, 李泓 2016 储能科学与技术 5 443Google Scholar

    Wu J Y, Liu P, Hu Y S, Li H 2016 Energy Storage Sci. Technol. 5 443Google Scholar

    [30]

    Wang L, Wu Z, Zou J, Gao P, Niu X, Li H, Chen L 2019 Joule 3 2086Google Scholar

    [31]

    Cao W, Zhang J, Li H 2020 Energy Storage Mater. 26 46Google Scholar

    [32]

    Ceder G 2011 MRS Bulletin 35 693Google Scholar

    [33]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 NPJ. Comput. Mater. 1 15010Google Scholar

    [34]

    Jain A, Hautier G, Ong S P, Persson K 2016 J. Mater. Res. 31 977Google Scholar

    [35]

    Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera R S, Gold-Parker A, Vogt L, Brockway A M, Aspuru-Guzik A 2011 J. Phys. Chem. Lett. 2 2241Google Scholar

    [36]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [37]

    He B, Chi S, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S 2020 Sci. Data 7 151Google Scholar

    [38]

    Nuspl G, Takeuchi T, Weiß A, Kageyama H, Yoshizawa K, Yamabe T 1999 J. Appl. Phys. 86 5484Google Scholar

    [39]

    He B, Ye A J, Chi S, Mi P H, Ran Y B, Zhang L W, Zou X X, Pu B W, Zhao Q, Zou Z Y, Wang D, Zhang W Q, Zhao J T, Avdeev M, Shi S 2020 Sci. Data 7 153Google Scholar

    [40]

    Adams S, Rao R P 2011 Phys. Status Solidi A 208 1746Google Scholar

    [41]

    Henkelman G, Jonsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [42]

    Kirklin S, Meredig B, Wolverton C 2013 Advanced Energy Materials 3 252

    [43]

    Zhu Y, He X, Mo Y 2017 Adv. Sci. (Weinh) 4 1600517Google Scholar

    [44]

    Wang X L, Xiao R J, Li H, Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269Google Scholar

    [45]

    Sendek A D, Cubuk E D, Antoniuk E R, Cheon G, Cui Y, Reed E J 2018 Chem. Mater. 31 342Google Scholar

    [46]

    Liu B, Yang J, Yang H, Ye C, Mao Y, Wang J, Shi S, Yang J, Zhang W 2019 J. Mater. Chem. A 7 19961Google Scholar

    [47]

    Wang A P, Kadam S, Li H, Shi S Q 2018 NPJ Comput. Mater. 4 15Google Scholar

    [48]

    Liu Y, Zhao T L, Ju W W, Shi S Q 2017 J. Materiomics 3 159Google Scholar

    [49]

    Liu Y, Guo B R, Zou X X, Li Y J, Shi S Q 2020 Energy Storage Mater. 31 434Google Scholar

  • [1] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能. 物理学报, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦. 物理学报, 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [5] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [6] 袁俊鹏, 刘秀英, 李晓东, 于景新. 沸石分子筛对CH4/H2的吸附与分离性能. 物理学报, 2021, 70(15): 156801. doi: 10.7498/aps.70.20210101
    [7] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算. 物理学报, 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [8] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] 苏佳杭, 伍钧, 胡思得. 基于数据库进行乏燃料鉴别的多元统计分析研究. 物理学报, 2019, 68(9): 090204. doi: 10.7498/aps.68.20190107
    [10] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [11] 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开发. 物理学报, 2018, 67(12): 128801. doi: 10.7498/aps.67.20180657
    [12] 周双, 冯勇, 吴文渊, 汪维华. 一种基于模糊C均值聚类小数据量计算最大Lyapunov指数的新方法. 物理学报, 2016, 65(2): 020502. doi: 10.7498/aps.65.020502
    [13] 骆军委, 李树深. 半导体材料基因组计划:硅基发光材料. 物理学报, 2015, 64(20): 207803. doi: 10.7498/aps.64.207803
    [14] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [15] 胡国进, 欧阳楚英. 表面效应对锂离子电池正极材料LiMn2O4性能的影响. 物理学报, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
    [16] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [17] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [18] 申晓志, 袁 萍, 王 杰, 郭逸潇, 乔红贞, 赵学燕. 拟合参量计算跃迁概率. 物理学报, 2008, 57(7): 4066-4069. doi: 10.7498/aps.57.4066
    [19] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 耿新华, 熊绍珍. 太阳电池用本征微晶硅材料的制备及其结构研究. 物理学报, 2005, 54(10): 4874-4878. doi: 10.7498/aps.54.4874
    [20] 郭常霖, 陆昌伟, 沈定坤, 俞志中. 二次锂电池电极材料非晶态MoS3的结构研究. 物理学报, 1985, 34(10): 1336-1341. doi: 10.7498/aps.34.1336
计量
  • 文章访问数:  6590
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-10-21
  • 上网日期:  2020-11-18
  • 刊出日期:  2020-11-20

/

返回文章
返回